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1. INTRODUCTION AND SUMMARY

The original objectives of this program were to explore optical methods

for performing eigensystem calculations based on matrix-vector or

matrix-matrix multiplications. Specifically, the program called for the

analysis and design of a high accuracy Acousto-Optic (AO) vector-matrix

multiplier together with pre- and post-processing electronics and

input/output interfaces to implement an eigensystem solution algorithm

suitable for optical implementation. The main goal of the program was

to explore high accuracy ( 16 bits) optical-based special purpose

systems whose performance would exceed, by orders of magnitude, the

current or even projected performance of electronic systems such as

CMOS, VHSIC, GaAs, etc. Such systems would find applications in the

Adaptive Phased Array Radar (APAR) area, which by nature, has extremely

high computational requirements, of the order of 100 -1012 M-A/s

(multiplications/additions per second).

S" In the first phase of the program, available eigensystem-solution

algorithms were studied, in order to determine their suitability for AO

implementation (Section 2). The results of this study showed that all

algorithms, aside from the matrix multiplication part, require a

plethora of operations to be carried out electronically rather than

optically. This is because optics cannot easily or practically perform

either logical operations or certain arithmetic operations such as

square roots and divisions. Such requirements make the possibly

efficient use of the AO processor highly questionable. In addition,

- nearly all eigensystem or direct APAR algorithms require computational

accuracies that exceed 16 binary bits. To accommodate such accuracies

requires that the AO processor be incorporated in a system involving

non-analog processing techniques. Unfortunately, there are not many

algorithms suitable for implementing high accuracy multiplications/

I
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additions with AO processors (Section 3). The only viable choice is the

DUAC algorithm (Digital Multiplication via Analog Convolution) and its

variations. Based on this algorithm, two novel AO architectures were

*developed, a single-detector, space-integrating AO system and a

time-integrating, systolic AO system (Section 4). Utilizing

state-of-the-art technology it was estimated that both systems could in

principle deliver throughput rates of the order of 109 M-A/s. The

performance of these systems was compared with that of state-of-the-art

purely-electronic counterparts using as figures of merit the system

efficiency, defined as throughput rate per unit power, and the

multiplication speed (Section 6). A simple analysis showed that both

systems (as well as other DMAC systems that have appeared in the open

literature) do not offer any advantage over electronic systems that

could be assembled with existing digital multipliers. The reasons for

the relatively poor performance of the optical systems are: (1) the

serial nature of DMAC and (2) the fact that optics does only part of the

multiplication while the non-optical part relies on power-consuming A/D

converters.

In view of this situation, we developed a Bit Parallel Multiplication

technique (BPAM) for performing DMAC, which eliminates the serial

problem (Section 3). Subsequently, we developed a novel space- and

time-integrating BPAM AO system which is capable of performing

multiplications in a single clock cycle (Section 4). However, an

analysis showed that the multiplication speed and efficiency are only of

the order of those already achieved with GaAs multipliers. The reasons

'. for this are: (1) the nature of BPAM which incorporates an increased

number of A/Ds and (2) the dimensions of the focused laser beam on the

- AO cell. Thus, we concluded that neither DMAC nor BPAM AO processors

offer any significant advantage over existing electronic processors.

However, in conjunction with DUAC, we developed a circularly polarizing

sampling technique that allows for complex matrix operations with much

reduced time and hardware constraints (Section 5). We believe that this

1-2
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technique can be applied to any systolic or array processor including

fully electronic systems.

These initial results were discussed with program monitors in meetings

held in early 1985. As a result of these meetings, it was mutually

decided to abandon all DMAC or BPAM AO related work and follow two new

directions for the program that were related to the APAR problem. These

two directions were: (1) optically interconnected electronic

multipliers and (2) position-coded residue optoelectronic look-up table
(LUT) processing.

The first topic involves optical interconnection techniques to enable

high-speed multi-pin, electronic multipliers to be arranged in patterns

that traditional micro-strip interconnects cannot handle (Section 7).

For this purpose simple but efficient fiber-optic splitter/combiner

techniques were studied and prototypes were developed in conjunction

with a 4x4 bit fiber-optically addressed digital multiplier

(Section 7.2). These results, although initial and largely incomplete

due to shortage of both funds and time, show that existing low-cost

fiber-optic technology can be used for globally interconnecting

electronic array processors. We suggest that these ideas merit further

development via the design and implementation of a fully electronic

addressed square array processor.

The second direction involves the use of residue-based, high-speed LUTs

that can be used for the APAR problem. Such LUTs allow for high-speed

(single clock cycle) flexible operations such as multiplications,

additions, subtractions and some forms of division. We approached this

idea from both the LUT and APAR-LUT processor level. At the LUT level

we suggested a novel implementation of a LUT which is based on the use

of interlaced electrode laser diodes or light-emitting diodes
(Section 8). This approach offers the advantage that existing

technology can be used for the implementation of GHz-type operation

1-S



LUTs. We demonstrated the capabilities of the laser diode LUT by

fabricating and testing a prototype. We show that data rates in excess

of 250 MHz (RZ data) can be achieved even for discrete component LUTs.

We believe that hybrid or monolithic approaches should offer switching

speeds to allow data rates in excess of 1 GHb. Operation in the residue

number system requires binary-to-residue and residue-to-binary

conversions. With this in mind, we showed that LUT technology can be

used in an efficient way for both conversions. Through an example of a

typical residue LUT system, a square array processor, we showed that the

conversions occupy about 20% of the hardware. This demonstrates the

need to remain in the residue domain for as long as possible so that the

conversion-required hardware is a relatively small fraction of the

total. The LUTs require a large number of laser diodes even for

moderate size applications and it is necessary to consider ways for

hardware minimization both at the LUT and system levels. We examined

LUT implementation techniques in which the number of laser diodes is

reduced by about 50%. However, the corresponding number of

interconnections required per laser diode is increased by a factor of

two and we concluded that this is not a favorable approach. At the

system level we studied a residue scaling technique which allows for

scaling by factors of about 0.005% of the total dynamic range while

maintaining accuracies of 9-10 bits. This seems to be a viable

technique and further analysis is suggested in conjunction with specific

applications.

:For the APAR LUT problem we examined a variety of non-iterative

algorithms for possible LUT implementation (Section 9). We found that

the only choice that allows for residue LUT implementation is a variant

of the Gram-Schmidt orthogonalization approach. In particular, this
approach does not require square roots and it allows for the

postponement of division until the last processing step. We showed,

through examples, that this technique yields results identical to those

obtained with straightforward arithmetic. We point out, however, that

4.-.4V
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this technique requires a rather large dynamic range which translates to

excessive hardware. Based on this technique we designed a LUT-based

pipelined processor which can invert a 6x6 APAR data matrix in about

7 clock cycles. This processor is a typical example of the flexibility

afforded by the residue LUT approach. However, we emphasize that these

are initial results and that much work is needed for further

understanding of the LUTs, the algorithms, and the concept as a whole.

We suggest that analyses are carried out to clearly demonstrate the

competitiveness of the residue LUT approach compared with digital

pipelined techniques.

41.'.
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2. EIGENSYSTEM SOLUTION

2.1 Introduction

In this section we consider the application of existing algorithms for
determining the eigenvectors in and eigenvalues X of a matrix C where

N T(21
C = EX inf(21

n=1

One application for the eigenanalysis of a matrix is in a method for

solving the Adaptive Phased Array Radar (APAR) problem illustrated in

Figure 2.1. In this problem, which this program specifically

addresses, we wish to calculate the adaptive weight vector w which

satisfies the system of equations

Cw = s (2.2)

where C is the data covariance matrix formed from V successive

'snapshots' of the data vector x(m), i.e.,

C E n m) x(m) (2.3)
m.1

and s is the steering vector formed from the data vector x(m) and the

reference signal xo, i.e.,

"1 s=() xo (m) (2.4)
m=1

2-1
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The solution to Equation (2.2) is written formally as

w = s (2.5)

so that if the complete eigenvalues and eigenvectors of C are known,

then from Equation (2.1)

N
X= 1 T (2.6)

The flow chart in Figure (2.1) shows the successive steps to be taken in

determining the weight vector w which is subsequently used to derive the

antenna output signal y(m) given by

y(a) = 1 T W x(a) (2.7)

To form the covariance matrix from the data vectors we require M outer

products of sise NxN (where N is the number of elements in the antenna)

and M matrix additions. Once the covariance matrix is formed, a

complete eigenanalysis of the matrix is made to determine the

eigenvectors n and eigenvalues X . The details of this eigenanalysis

depend on the particular algorithm used; the different algorithms that

can be used and which are particularly suited to optical implementation

foru the subject matter of the remainder of this section. Once the

eigenvectors and eigenvalues are determined, the operations required for

2-2



Data Snapshots x ( m)
(Vectors of Length N)

Covarlance Matrix Calculation M Outer Products of Size

M NxN
C ma) I m) X ( M Matrix Additions
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C (im) CovarianceMatrix

Compete lgeanalsls Details Depend onCompletef cEige nanalysism) (Implementation
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Output y( m)

Figure 2.1 Weight Determination for APAR by Complete Eigenanalysis of
the Data Covariance Matrix
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forming the weight vector are N vector inner products and N vector

additions. One further vector inner product is required to determine

the output signal y(m).

We note that all operations, leaving aside the eigenanalysis, are of the

V, type which can readily be implemented optically. Thus, the focus for

this method of solution of the APAR problem is on the algorithms

available for eigenanalysis and, in particular, on those algorithms that

are most suited to optical implementation.

2.2 Cershxorin Method

This method1p2 involves bounding the region of space in which the

eigenvalues are located. The flow diagram used for this method is given

in Figure 2.2. Thus, we first determine the radii, 6i, of the discs

which contain the eigenvalues, i.e.,

'p°

N
. = El ICij, 1 i I N (2.8)

j i

P The eigenvalues of C lie in the union of the discs Di of radii, 6i,
centered at Cij. If a of these discs are connected and disjoint from

the remaining, these discs then contain exactly a eigenvalues of C.

This requires a logic operation.

These bounds can be improved through repeated similarity

transformations. Thus, the first Cershgorin disc D is reduced by

using D C D-1 instead of C, where

D Diag ,...).9)
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P6
min (2.10)ik2 IC 11 - C iiI

and e is the magnitude of the largest off diagonal element. To

determine e requires a sorting operation in N(N-1) elements and p
requires a similar sorting operation in N(N-1) elements together with a

division. Finally, the similarity transformation requires two

matrix-matrix multiplications to derive D C D-I .

The advantages of this method are that it is simple and it uses matrix-

matrix multiplications, operations which can be implemented optically.

"* However, the method finds only eigenvalue regions and logic is required

for isolating the eigenvalues, an operation which optics cannot

presently address. Further, there is no definite order in which the

eigenvalues can be found. We also note that the method cannot be used

to find eigenvectors. One procedure for finding eigenvectors from

eigenvalues is that of inverse iteration, discussed in Section 2.4.

Thus, the Gershgorin method may be useful as a first step for other

methods such as inverse iteration.

2.3 Power Method

This method1'2 is an iterative method and is illustrated in Figure 2.3.

We begin with some guess -
(0) , for the dominant eigenvector and form

v(1+1) = C(1 (2.11)

in a matrix-vector multiplication operation. Next, the largest element of
Z(l+l) is determined, which involves a sorting operation in N elements

followed by N scalar multiplications, to derive

2-6
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Figure 2.3 Flow Chart for the Determination of Eigenvalues and
Eigenvectors using the Power Method
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- (1(1)1) (2.12)

As 1 * *, we obtain the eigenvector estimate J1, i.e.,

The corresponding eigenvalue estimate is given by

- ((2.13):,/.:..(z1 T z (1)

*The disadvantages of this method are that it is an iterative method

requiring logic and division operations both of which cannot be readily

implemented using optics. The convergence rate for obtaining solutions

is

V

x~ o[-- X2 (2.14)
1 

I

Various schemes for accelerating convergence have been proposed such as

using a shift of origin, i.e., using (C-pI) instead of C, using C
2

instead of C, and using the Rayleigh quotient (zT T

2-S
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.4

The power method breaks down for complex eigenvalues with the same

,Pt modulus.

2.4 Inverse Iteration

This e 1,2

Thsmethod is a variation of the power method and is best known for
411 finding the eigenvector corresponding to an eigenvalue close to some p.

A flow chart for this method is given in Figure 2.4. Thus, knowing an

approximate eigenvalue p, we first form, through N scalar additions,

the matrix E given by:

B = C - p1 (2.15)

We then seek solutions to the equation

(C - pI) 1 (I+I) = !( )  2.M

This is similar to the power method except that C is replaced by

(C-pI)-1 , both having the same eigenvectors.

The next step involves the triangular decomposition of B to give

E = L U (2.17)

4'.. The detailed operations involved in this decomposition are shown in the

WV flow diagram of Figure 2.5, and involve scalar multiplications and

additions together with logic decisions.

2-9
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Having decomposed the matrix E re solve the sets of equations

L a = _(l) (2.18)

U _(+1 = (2.19)

by back substitution to derive the eigenvectors and eigenvalues.

Operations involved here are sorting in N elements and N scalar

multiplications.

Disadvantages of the technique are that a considerable number of

transformations are required and the convergence properties are far from

satisfactory. In addition, matrices exist which have no triangular

decomposition in spite of the fact that their eigenproblem is

well-conditioned, or whose triangular decomposition is numerically

unstable.

2.5 Q-R Method

This method1'2 has proven to be the most effective of known methods of

solving the general eigenvalue problem. In contrast to the method

discussed in Section 2.4, it is based on unitary transformations. A

flow diagram of the approach is given in Figure 2.8. The first step

involves the Q-R decomposition of the matrix to give a factorization

into the product of a unitary matrix Q and an upper triangular matrix R

" (1 ) = Q(1)R(l) (2.20)

The steps involved in this procedure are illustrated in Figure 2.7.

Operations involve (N-l) squares, (N-l) additions, 1 division and 1

multiplication for each pass through the loop together with 1 outer

product and matrix-matrix multiplication.

2-12
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From Equation (2.20) we form

C(1-1) R(1) Q(l) (2.21)

Q( ... C Q(2)... (2.22)

As 1*

4: 

C(1) * Diag (X1) X2 1 ... XN) (2.23)

i.e., for large X we have determined the eigenvalue matrix A

IA

oCi) = A

Thus,

A = QT C Q (2.24)

.4%

or rearranging

C Q = Q A (2.25)

where Q contains the eigenvectors.

The operations involve extensive matrix-matrix multiplication together

with logic decisions.
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2.6 Discussion

Although many algorithms exist for eigenanalysis of matrices, they all

involve extensive arithmetic and logical operations. The basic

arithmetic operations of addition, subtraction, and multiplication can

be implemented using optics. However, operations such as division,

square roots, and logic decisions cannot presently be implemented

optically. Thus, the algorithms discussed in this chapter require, at

best, a hybrid optical-electronic approach for use in a practical

system.

For such a hybrid system, even if those operations which can be

implemented optically prove to be executable at higher speed than can be

obtained electronically, the overall speed is still dictated by

non-optical operations. If continued switching between the optical and

electronic domains is-necessary as is the case for executing these

algorithms, the value of the optical processing contributions to the

overall system becomes questionable.
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3. ALGORIThMS FOR HIGH-ACCURACY ACOUSTO-OPTIC PROCESSORS

Optical systems performing multiplication and addition can be

implemented via analog, binary, and residue techniques. Analog

processors, although fast, suffer from low accuracy and can only be used

for applications where 8-10 bits accuracy is required. Due to the

nature of our applications (eigensystem solution, AFAR, etc.) we require

accuracies well in excess of 10 bits (e.g., 16 or 20 bits) and, thus, we

will not consider analog processors. This Section covers binary

techniques which result in AO systems of high digital accuracy. Residue

arithmetic methods will be discussed in Section 8.

3.1 Dixital Multiplication via Analoz Convolution (DMAC)

Multiplication of two binary numbers via analog convolution3 (DMAC) is

based on the novel idea of convolving the binary words representing the

two numbers. The result is generated in a mixed binary format where,

like binary arithmetic, each digit is weighted by a power of 2; but

unlike binary arithmetic, each digit can be > 1. The algorithm can be

best realised via some simple examples: consider the calculation of the

products 15*41 and 29*62. We first convolve the binary representations

of the numbers for each product. The results of the convolutions are

(15.41): [0 0 1 1 1 1],[1 0 1 0 0 1] = [0 0 1 1 2 2 1 2 1 1 1] (3.1)

(29062): [0 1 1 1 0 1].(1 1 1 1 1 0] = [0 1 2 3 3 4 3 2 1 1 0] (3.2)

Next, we weight each convolution point by a power of 2. Finally we sum

the weighted points to obtain the final result:

"1.8 1* .2.2
15"41 = [e2 * + 2.26 + + 1.20] = 615 (3.3)

29*62 = [1.29 .2*28 +32 . . . 020] = 1798 (3.4)

. Ne



Note that in order to sum different products (which is the case for inner

products), we sum the corresponding points and subsequently weight and

sum. For example:

(15.41) + (29.62) = [(1+0)-29 + (2+1)o28 + (3+1)92 + . . . +

(1+0)-20] = 2413 (3.5)

The importance of this scheme is evident in considerations of dynamic

range requirements. For example, to multiply two numbers each with a

dynamic range of N = 216 = 65,536, we need an output dynamic range of

N = 232 = 4.3 x 109. With binary encoding, the input and output dynamic

range must be 2 (i.e., 10 and 11') and 16 (i.e., when all 16 bits are

011), respectively. Consider now the summation of 50 such products. If

analog techniques were used, we would need an output dynamic range of

2.1 x 1011. With the binary scheme, we need input and output dynamic

ranges of 2 and 0 x 18 = 800.

Notice that once the convolution data have been generated (in analog

form), an A/D converter in conjunction with a shift-register/

accumulator can be used to convert the mixed binary data to binary data.

The A/D converter requirement is for log2 k bits, where k is the maximum

value of the mixed binary data.

The DMAC technique can be extended, via a twos complement encoding, to

handle both positive and negative numbers. To allow sign notation, the

leftmost bit for each binary word is the sign bit: 0 for plus and 1 for

minus. Positive binary numbers are represented by their original binary

form with the addition of the sign bit. For example, the integer +13 is

represented by 0 1 1 0 1.

To represent a negative number we first change the sign bit of its

signed binary absolute value from 0 to 1. Next, we change all the ones

to zeros and all zeros to ones (this is the ones complement

3-2
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representation). Finally, we add a 1. For example, for the integer

-45, the ones complement representation is 1 0 1 0 0 1 0, which in two

complement form becomes 1 0 1 0 0 1 1. Conversion from the twos

complement representation to signed absolute value is obtained by

changing all zeros (ones) to ones (zeros) and adding a 1.

As is shown in Reference 4, one technique of multiplying two numbers,

using twos complement binary representation, requires that the input

numbers be represented by the same number of bits required to represent

the output. For example, consider the product +13 x -45 = -585. To

represent the output, we require a total of 11 bits, including the sign

.P bit. To extend the input numbers to 11 bits, we insert six zeros

between the sign bit and the most significant bit (MSB) of +13 and four

ones between the sign bit and the MSB of -45. Thus the input numbers

become 0 0 0 0 0 0 0 1 1 0 1 and 1 1 1 1 1 0 1 0 0 1 1 for +13 and -45

* respectively. The product of the binary numbers can now be calculated

by performing a usual-sense multiplication with the exception that any

bits generated to the left of the sign bit column are truncated. An

example of this procedure is shown in Figure 3.1 for the case of the

product +13 x -45. The result is expressed in a mixed binary form and

it can be converted to twos complement representation by: divide the

least significant mixed binary bit by modulus 2, add the quotient to the

next bit, divide by 2, add the quotient to the next bit, divide by 2,

add the quotient to the next bit ...... etc.

*" The remainders of these series of operations constitute a binary word

which is the twos complement representation of the mixed binary output.

Note that the remainder of the first division is the LSB and the

remainder of the last division is the sign bit of the so-obtained twos

complement binary word. An example of this procedure is shown in

Figure 3.2 for the case of the product +13 x -45 = -585.

93-'
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Figure 3.1 Example of Multiplication in Twos Complement
Representation
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Figure 3.2 Example of Conversion from Mixed Binary Representation
to Twos Complement Representation
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As Figure 3.2 suggests, the result is 10 1 101101 11 which is the

twos complement representation of the number -585. Note that if the

mixed binary result is generated in the form of an analog signal, then

the device necessary for the conversion is an A/D converter followed by

s shift register/accumulator.

As mentioned earlier, the mixed binary form of the output allows

addition of different products without the need for carries. To

illustrate this, consider the summation of the products (+13 x -45) and

(+13 x -10). The mixed binary representatiQn of the product

+13 x -10 = -130 is 3333223 1110. Addition of this result to

the one that corresponds to the product +13 x -45 yields

33222022111

+ 33332231110

Q686554253221

Conversion of the mixed binary result to twos complement gives 1 0 1 0

0 1 1 0 1 0 1 which is the twos complement representation of the

number (-585) + (-130) =-715.

From the above brief discussion it is apparent that incorporation of

the DMAC-twos complement arithmetic by optical processors, solves two

major problems; specifically, accuracy and bipolar number handling.

1However, note that the use of such algorithms results in a major

sacrifice in the processor's time-bandwidth product (TBW),

specifically, a reduction by at least a factor of 2N-l, where N is the

number of bits in the input. This is due to the nature of the

emtserial-type convolution which requires 2N-1 clock cycles for its
L 6 : .',completion. Note that aside from the TBW reduction, we undergo a

multiplication speed reduction (as compared to the clock).

Specifically, the digital multiplication time required is Tb x (2N-1)

3-6
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where Tb is the clock pulse-width. These issues are discussed in more

detail in Section 6.

3.2 Bit Parallel Multiplication (BPAM)

To avoid the DMAC problems, we have developed a bit-parallel digital

multiplication (BPAM) algorithm.5 This can be explained via a simple

convolution example. Suppose we wish to convolve the sequences

A3AI2AjA 0 and BoBIBB 3 where Ai,B i i = 0,1,2,3 are digits of binary
value. Since N=4, we should obtain 2N-1 = 7 convolution points. A

rigorous implementation of the convolution, shows that the 7

convolution points are

- .P. = A IB 0 +' p2
-= A2O + AIB I + AoB 2

P3  A3Bo + A2BI + AB2 + AOB3  (3.6)

P4  = A3B1 + A2B2 + AIB3

P5  = A3B2 + A2B3
P8  = A3B3

From Eq. (3.7) we can observe the following:

(1) The output convolution points (P0 through P6) are linear
combinations of various A.Bj products (e.g., P1 = AIB + AoB )

V VV0

(2) If all A.B. products are available in parallel, one can form the
q~ output convolution points by summing properly.

(3) If the products and the various product summations can occur in

parallel, then the time required for digital multiplication is no

longer 2N-1 clock cycles but rather 1 clock cycle.

3-7



From the above we see that, in principle, a BPAM can be formed in a

single clock cycle as long as all the A.B. input bit combinations are4 J

available in parallel. Note that the summation of M different number

products (i.e., inner product) can be achieved in a way similar to the

one for DUAC; i.e., sum in parallel all the Ai B jm, i,j = 1,2,....N,

m = 1,2,...2N-1 convolution points.

The EPAM approach solves at least two major problems (as compared with

DMAC); namely, (1) TBW reduction and (2) net multiplication speed.

However, it creates a problem which is absent in DUAC; namely, it

requires NxN output points for a single multiplication, which translates

to a high output resolution requirement. Nevertheless, it is the only

binary technique that guarantees both high speed and accuracy.

3-
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4. OPTICAL ARCHITECTURES FOR DMAC AND BPAM

In this Section we discuss a number of possible optical architectures

which we have developed, in conjunction with the algorithms of

- -Section 3. The first family of processors (space-integrating

Acousto-Optic processor and time-integrating Acousto-Optic processor)

represent systems that are based on the serial-type convolution. The

performance of these processors is typical of that expected from systems

which utilize serial DMAC. These processes can be fabricated using

present custom technology. The second family of processors (BPAM

Acousto-Optic processor) represent systems that are based on

bit-parallel digital multiplication (BPAM). Unlike the first class of

systems (which require 2N-1 clock cycles for the formation of the

-. convolution) the multiplication is formed in a single clock cycle

thereby greatly enhancing the net multiplication speed. These

architectures are good examples of BPAM optical processors that can be

fabricated with present technology. Furthermore, these architectures

should serve as a guide to the performance that may be expected from a

*.- BPAM processor.

4.1 DRAC Acousto-Optic Space-Integrating Processor

A simple binary number multiplication can be achieved using

Acousto-Optic (AO) techniques and the serial convolution scheme of

Section 3.1. Suppose we want to multiply two numbers; A and B, each

represented by N bits. The bits of both numbers are made available

serially (as a function of time) and named SA(t) and SB(t)

respectively.

The optical system shown in Figure 4.1 is composed of two AO cells

arranged in a counter-propagation configuration (i.e., the sound waves

travel in opposite directions). The first-order diffracted beam from

7 A01 is imaged on A02 through a pair of lenses and a spatial filter

4-1
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(not shown). The product of the resulting distributions is imaged onto

cylindrical lens L1 through a second pair of lenses and a spatial

filter. A detector follows a slit, which is placed at the back focal

plane of LI, so that only the DC part of the resulting Fourier Transform

is detected. Thus, the system part Ll-slit-detector is used in order

to form the integration of the product of the data present in AOl and

A02. The data SA(t) and SB(t) are applied simultaneously onto the AO
cells. At every instant of time, lens L1 forms the summation over the

bit-by-bit products SA* SB . The resulting light is detected by the

detector. Because the data SA(t) and SB(t) are moving in opposite

directions, the light incident on the detector is proportional to the

convolution SA(t)*SB(t). Consequently, the output of the detector is

0 proportional to the convolution values. Since the data SA and SB are

WP4 composed of N bits, the convolution is composed of 2N-1 parts each

triangular in shape, under the assumption that the bits are represented
by square pulses. Note that the maximum value of the convolution occurs

when all SA and SB data are present in the AO cells. This corresponds
to the highest triangle of Figure 4.1. Thus, we see that the simple

arrangement of Figure 4.1 performs the first step of the binary

algorithm; namely, the convolution. To obtain the product A*B, we have

to weight each convolution point by a power of 2 and then sum the

.'" results. This can be achieved if an A/D converter follows the detector
and feeds its output to a digital shift-register/accumulator. When all

2N-1 convolution parts have been accumulated, the values of the shift

register are read out. This binary word corresponds to the product A-B

with an accuracy of 2N bits (each number is represented by N bits in the

input).

.9. We can now expand the binary number multiplier system of Figure 4.1 to a

multi-channel system for vector-matrix multiplication. Suppose we want

to multiply the vector b11, b21 . .,bM1 with the matrix A consisting of

elements a.. where i = 1,2 .... M and j = 1,2,....M. The result will be V
inner products C1 l, where i 1,2..

.-.- 4-3
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Figure 4.2 Space Integrating Acousto-Optic Processor for Accurate
Vector-Matrix Multiplication

# 4-4



The optical system shown in Figure 4.2 is similar to the optical system

of Figure 4.1, except that: (1) AO1 and A02 are M-channel cells and (2)

lens L1 is spherical rather than cylindrical. If a cylindrical lens is

substituted in place of L then the system is an exact multi-channel

version of the system of Figure 4.1. Thus, M detectors placed in
'. parallel at the focal plane and at locations x = 0, y = yll y = Y21

y = yU (where yly 2,y3 ... N
7 are the locations of the M AO cell

channels across y), record M parallel convolutions:

a al'b11 b1i, a12*b2 1 ,. .al"lbl1 (4.1)

If these convolutions are added and weighted, the result corresponds

to a single inner product, Cll. This is exactly the function of the

power of the spherical lens L1 along y. Thus, the lens L

accomplishes two tasks: (1) it performs the necessary convolution

.integral along x and (2) it sums the various convolution points along

y similar to the operation shown in the parentheses of Eq. (3.5).

This operation is allowed because of the mixed-binary format of the

output (resulting from the binary multiplication scheme) which allows

for product summation without the need for carries. Thus, the output

of the detector corresponds to a convolution which, after the required

post-processing, is equal to the inner product:

C11 = [allbll . a12 b 2 1  . a111b] (4.2)

To obtain the second inner product C21 , the vector bll,b21 .  1 is

21..1 ..... b l i

loaded onto A02 while the vector a21,a22 ,...,a21 is loaded onto A01.
This procedure is repeated M times until, all C ij,C = 1, 2,...,M inner

products (that correspond to the vector-matrix product AoB) are

obtained. Similarly, and in order to obtain a full matrix-matrix

multiplication, this procedure is repeated V x L times.
N N-



We see that the system of Figure 4.2 is a real-time high-accuracy

vector-vector multiplier which can be used for either vector-matrix or

matrix-matrix multiplication. From the systems' point of view, the

above multiplier offers another very significant advantage, namely, a

single output, since a single detector is uied for inner product

detection. Consequently, the required interface with a digital

microprocessor is very simple.

It is worthwhile to mention that if M detectors are used (in conjunction

with a cylindrical lens, L1) the system can still calculate inner

products. In this case the necessary product summation must be carried

out digitally. This obviously increases the complexity of the

electronic post-processing as well as of the interface, but it offers

some additional flexibility. Specifically, it allows for separate

operations over the various input/output channels, just like a

conventional digital array processor. Whether one wants to use a

processor with a single detector or 9 detectors is a question that

depends on the specific algorithms used and can be answered only when a

specific analysis of existing algorithms is made in conjunction with the

architectural choices.

4.2 DMAC Acousto-Optic Space-Intezrating Processor Characteristics

The binary algorithm allows the processor to have input and output

dynamic ranges of N and 2N bits, respectively. The component dynamic

range requirements are 2:1 for the AO cells and NxM:1 for the detector
in a single-detector system or N:1 in a multi-detector system. This is

because, for full inner product formation, the maximum possible value of

the output convolution is N x M, which occurs when all M input numbers

* have all their input bits at logic '1. Consider now a specific example

of M = 128 and N = 8 (18 bits output). Then NxM = 1024, which means

that for a single detector system, the dynamic range of the detector

needs to be at least 1024:1. In practice, however, the dynamic range
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of the detector should be higher in order to avoid detection errors

'fwhich might be severe if one takes into account the post-processing

stage where each convolution point is weighted by a factor of 2). A

simple statistical analysis shows that,6 in order to keep the bit error

probability to < 2.9 x 10-7 , the dynamic range of the detector needs to

' be increased by a factor of 10, which corresponds to 10,000:1. This

requires a detector with 40 dB dynamic range, which is commercially

available. On the other hand, if a 128-detector system is to be used,

the maximum value of the convolution is N, which corresponds to a

detector dynamic range of 10 x 8:1 or 19 dB. It is evident that the

detector requirements are not severe and can be met with commercially

available devices.

To avoid computational errors, both AO cells should be very uniform over

their entire apertures. This requirement is significant, especially for

the single detector system, and comes about because of the 2-D spatial

integration used. If non-uniform devices are used, convolution points

of the same analog values will correspond to different light levels, and

spatial integration will consequently yield an incorrect output.

Initial analysis shows that the uniformity required should be better

than N x 9:1 and tends to approach the dynamic range of the

detector(i.e., 10 x N x M:1). The uniformity requirement of the AO

cell is achievable because the required AO cell time-aperture is

relatively small (i.e., for N = 9 and bit-width of 10 nsec, the required

aperture is 0.08 psec). The small apertures associated with low
acoustic attenuation AO crystals result in a very uniform acoustic

field, which corresponds to the propagating bit-stream. On the other

-hand, because of the small aperture, acoustic diffraction is

controllable. Note that the effects of acoustic diffraction, in

conjunction with the algorithm used, can be severe (this is explained in

detail in Reference 7).

4-7
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9.

The A/D converter requirement is log2 (N x M) bits for a single detector

system or 1og2 (N) bits for an M-detector system. For example: for

N = 8 and M = 128, log2 (NxM) = 10 and log2 (N) = 3. These A/D

requirements are easily met with commercially available devices.

The throughput rate of the system depends on several factors: (1)

number of input channels, (2) number of output channels, (3) number of

input bits, (4) input bit width and (5) number and speed of available

A/D converters. Let us calculate the throughput rate of the system

based on rather optimistic data. We assume the availability of a Bragg

cell with 128 input channels and use 128 output channels (i.e., the most

flexible version of Figure 4.2 where lens L1 is cylindrical).

For N = 8 and a bit width TB = 100 nsec, the total time required for

- formation of a single inner product is

T = (2N-1) TB = 1.5 psec (4.3)

where the extra (N-1)TB time represents the total duration of zeros

which follow the N bits. This is required in order to separate the

different inner products. During this time, the system (with M = 128)
4.

has performed 128 multiplications. Thus, the throughput rate of the

system is

R = 128 K-A/1.5 x 10-6 sec = 8.5 x 107 K-A/sec (4.4)

To improve the throughput rate of the system, we need to decrease T,

-J' which implies that we need to decrease the input bit width. For example,

for TB = 3 nsec, the throughput rate of the system is R=
2.84 x 10K -A/sec or 2.8 GOPS.

For this scenario with TB z 3 nsec, the output A/D requirements are:

(1) 128 3-bit A/D's with a speed of 300 MHz (for the multichannel output

4-8



version) and (2) a single 10-bit A/D with a speed of 300 MHz (for the

single output version). Clearly the single-channel output version is

impractical since 10-bit A/D's at 300 MHz are not presently available.

On the other hand, the multi-channel output version, although difficult,

is more realistic.

4.3 DUAC Acousto-Optic Time-Integratina Processor

The basic unit of this processor is the classical time-integrating AO

processor whose schematic diagram is shown in Figure 4.3. We first

describe the operation of the unit for the formation of a single product

(e.g., +13 x -45) via the twos complement scheme.4 The AO cell is

driven by the binary data a = +13 in a bit-serial mode (Figure 4.4).

The sign bit is applied first. At time t = t1 all bits that correspond1

to the number +13 have been loaded into the cell. The so-created

spatial distribution is Schlieren imaged onto a time-integrating linear

detector array. The array consists of N elements, where N is the number

of output bits (e.g., for our example N = 11). At time t = t1 the

binary data that correspond to the number b = -45 are applied onto the

- laser diode in a bit-serial mode. These data are applied such that the

LSB is first. The resulting pattern is time-integrated by the detector

array. At time t = t2 the data in the AO cell have moved by distance dB

which corresponds to a time-delay TB equal to the duration of a bit plus

a zero (i.e., TB = t2 -t , see Figure 4.4). At the same time the second

bit (i.e., LSB + 1) of number b is applied onto the laser diode. A new

pattern is created which is added, by the detector array, onto the

already existing pattern. At time t = t3, a new pattern leaves the AO

cell, is added by the detector, etc. Thus, after time t = t11-t1 + TB

the last (i.e., 11th) pattern has been created and added. At this
point, the values of the N elements of the detector are read. A close

inspection of Figure 4.4 shows that the readout charge has a value

(function of element) that corresponds to 3 3 2 2 2 0 2 2 1 1 1, which

is the mixed binary form of the number +13 x -45 = -585. These analog

4-9
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values are consequently converted into twos complement representation

via the AID/shift-register/accumulator unit.

We emphasize two important points: (1) each bit in either a or b data

is followed by a zero. This is necessary in order to separate (onto the

detector array) different output bits, and is due to the fact that while

the data b are applied, data a are moving. (2) the LSB of the word a is

followed by 2N zeros of total duration T = NTB. This is necessary in

order to distinguish between different products; that is, if the LSB of

a is followed by the sign bit of a number c, the output would be

incorrect due to contributions from the product bc.

The unit we have described serves as a simple two-number multiplier.

Extension to vector-vector multiplication (via inner product formation)

can be achieved via the multi-unit architecture of Figure 4.5. In this

-case an array of M laser diodes in conjunction with an M-channel AO cell

is used. Each of the a. (i = 1, 2, ..., M) elements of vector a drives

a different AO cell channel. Similarly, each of the b. (i = 1, 2, ... ,
'f 1

M) elements of vector b drives a different diode.

For the time being let us ignore the cylindrical lens. Instead, let us

assume that the AO cell is imaged onto an MxN element, 2-D detector

array. This system is basically a multi-channel version of the system

of Figure 4.3, and it provides M products ai x bi, i = 1, 2, ..., V.

Summation of these products results in an inner product a1b1 + ... +

abl. This summation is accomplished via the integration property

(spatial integration) of the cylindrical lens and is valid because of

the mixed binary form of the output, which allows for product summation

without the need for carries. The resulting pattern is consequently

ft.. time-integrated by the N-element, 1-D detector array placed at the back

focal plane and at location f = 0.
4.4. y

ft,

f.

. , . '. ,- , . . ++ . ." -+ . + +. -•• . . -. .+ . - " " " .. -. . -. '. ". .. .' f...+. ',-



Dwg. 9358A97

M -Laser Diodes

M-Channel 82
AOCeII

Detector Array

.

Figure 4.5 Time-Integrating Acousto-Optic Processor for Inner
Product Formation

4-13



By utilizing the delay properties of a larger aperture M-channel AO

cell, in conjunction with an MxK array of laser diodes, we can extend

the system of Figure 4.5 to the systolic processor of Figure 4.6. This

system at peak operation can provide, in parallel, K inner products

bilail + ... + b iaim, i = 1, 2, ..., K which are formed via the space-

integration of the lens and the time-integration of the detector array.

Note that in this case the 1-D detector array needs to have KxN

elements. Also note that if the laser diodes illuminate adjacent cell

areas (i.e., along x), only K/2 inner products are formed during each

data cycle. This is because of the requirement that the LSB of the b.
data be followed by 2N zeros of total duration T = NTB. We elaborate on

these, as well as other, system issues in the following Section.

4.4 DMAC Acousto-Optic Time-Integrating Processor Characteristics

Because of the algorithm used, the system described in Section 4.3 is

capable of forming high-accuracy, inner products between bipolar-value

vectors. The output accuracy is N bits, which corresponds to a dynamic

range of 20 log (2 N). To fully utilize this accuracy, however, one has
* .to minimize possible detection errors, which can be large if we consider

the post-processing stage where we effectively weight each mixed binary

bit by a power of 2. The key point is to minimize the maximum value

accumulated in the detector array, which is NxM. For minimum detection

errors8 (bit error probability of < 2.9 x 10- 7), the detector array

*should have a dynamic range of at least lOxMxN:l. This requirement

effectively constrains both N and M. Readily available state-of-the-art

detectors have a dynamic range of better than 35 dB which, in principle,

allows systems with N = M = 18. The throughput rate of such a system

highly depends on the data loading rate. Currently available AO cells

and laser diodes allow for bit widths down to 2 nsec. This means that

for N = 18, we need at least 2x16x2 nsec = 64 ns for product formation,

o after loading the data in the AO cell. Consequently a system with N = K

= = 18 has a throughput rate of 2 x 109 M-A/sec. The A/D requirements

" 4-14
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depend on the number of bits we are reading out which in turn depends on

the location of the detector element we are reading out. For example,

the maximum possible value for the sign-bit element is xN, for the MSB

is Mx(N-1), for the MSB-1 is Mx(N-2), etc. To read these values, the

A/D's need to have log2 (MxN), log2 (Mx(N-1)), ..., etc., bits,

respectively. A simple analysis shows that, in order to read out 8

inner products, we need 64 A/D's at 8 bits, 32 A/D's at 7 bits, 16 A/D's

at 6 bits, ..., etc. These A/D's need to operate at a minimum input

frequency of - 16 MHz.

Other system issues we need to consider are: (1) laser diode

collimation and (2) output detectors. The former depends on both N and

the sound speed in the AO crystal. For an efficient system a GaP AO

cell should be used because of its good diffraction efficiency

(> 30%/RF watt) and wide bandwidth (> 500 M~s 3-dB bandwidth). In this

material the sound speed is v = 6.3 x 106 mm/sec which implies that,

for N = 18 and bit + zero width of TB = 4 nsec, the total time-duration

of a binary word is Tw = 16 x 4 nsec = 64 nsec. This corresponds to a

distance of - 0.4 mm over which a single laser diode needs to be

collimated. An additional constraint is the maximum allowable light

cross-talk between adjacent diodes. To avoid detection errors the

cross-talk should be down by the same order as the dynamic range of the
_*- detector; e.g., for N = K = 16, 9 = 16, it should be at least -34 dB.

These requirements can be efficiently met via the use of a fiber-optic

fan-out8 in conjunction with an array of miniature graded-index

'. collimation lenses. Note that at any instant, every other laser diode

is off. In principle, one can take advantage of this by turning off the

corresponding detector arrays. This would guarantee absence of cross-

talk-related detection errors. To achieve this, one needs detectors

that can operate at the binary word switching frequency. For N = 16 and

TB = 4 nsec the switching frequency is f. = 1/(16 x 4 nsec) - 18 MHz,

which implies that the detectors should have an integration time of 64

nsec or a clock frequency of 16 MHz. Parallel-readout detector arrays

.4-1.
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with the above characteristics can, in principle, be made with current

technology. An alternative solution involves a fiber-optic fan-out in

conjunction with separate detector elements. This solution guarantees

not only the proper integration time but also minimal detector cross-

talk which, in turn, minimizes unwanted detection errors.

4.5 BPAM Acousto-Optic Processor

In this section we describe one possible architecture which we have

developed for implementing BPAM. Consider the AO processor of

Figure 4.7. Light from 4 different laser diodes at wavelengths

X ) 0,i,)2,3 is multiplexed in a fiber using conventional fiber-optic

techniques. The light level from each diode has a value proportional to

-i) i = 0,1,2,3. Thus light at X0 has a value proportional to A0 , at X

proportional to A1 , etc. Thus, if a 4 bit binary representation is

used, e.g., 1011, then light will be 'on' from lasers at XO, X2 and X3,

and 'off' from the laser at X V The fiber output is then collimated

(via lens L1) and expanded (via lenses L2,L3) along the y-dimension.

Along the x-dimension the light is focused. The so-created 'pencil'

beam illuminates a 4-channel Acousto-Optic cell. Each of the 4 channels

of the AO cell has a value proportional to B.. Thus the bottom channel

V. . gets the B0 value, the next channel the B1 , etc. If Bo,BI,B2 ,B3 is

binary, e.g., 0110, then we will have the two middle channels lon' and

the bottom and top channels 'off'. The AO device is followed by a prism

and a cylindrical lens. The prism/lens set accomplishes the following:

(1) wavelength demultiplexing and (2) focusing of the 16 spots. Thus,

V*.- the back focal plane of L4 we obtain 16 spots in a 4x4 format. Assuming

that XO>A>A2>A3 then the values in the set of spots are:

?o
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Y A3B3  A2B3  AIB3  AoB3

• A3B2  A2B2  AIB 2  AB 2

Output
Spots x

A3BI  A2BI  AIB I  AoB1

A3B0  A2B0  AIB0  AOB0

Close inspection of the values of these spots reveals that we have
formed in parallel all AiB., ij = 0,1,2,3, products necessary for the

formation of the 7 bits (see Eq. (3.7)). Next we need to add these

products properly in order to obtain the 7 convolution points PO-P6.
'0 ,

The additions can be accomplished in a variety of ways:

(a) The use of detectors with specific area shapes (e.g., see

Figure 4.8). The shapes are such that the proper products are

added instantly. This is shown in detail in Figure 4.8.

Comparison of the results of Figure 4.8 and those of the previous

Section shows that we indeed obtain the correct convolution points.

(b) The use of 16 fibers each of which collects light from a particular

spot. The proper fibers are combined onto a single element

.4.. detector which adds the light leaving the fibers' output. In this

case we need 16 fibers and 7 detectors.

,-1, (c) The use of a cylindrical lens which is set at 45* with respect to

the y-dimension. This orientation of the lens results in a

collapse of the data, which are then read-out by 7 detectors.

.4Ie
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Note that all three techniques are simple and equivalent. The choice

depends on the particular design, processor size, etc. Finally, note

that the 4-channel AO device can be replaced by a single-channel device

in conjunction with frequency multiplexing. In this case, data

Bo,B1,B2,B3 will be at frequencies fO,f1,f2,f3 . Note however that the

AU device linearity requirements are increased in order to avoid

spurious effects due to the presence of 4 RF frequencies.

4.6 BPAM AU Processor Characteristics

The BPAM AD processor allows us to perform a digital multiplication

every clock cycle (not every 2N-1 cycles as in DMAC). This technique

L fully utilizes the inherent speed of optics. In principle, the system

can multiply (and if we desire accumulate) binary numbers as fast as the

lasers or AD cells can be switched. State-of-the-art lasers can be

switched every 0.3 nsec (this translates to a throughput rate of

3 COPS). For a practical scenario, however, the limiting factor will be

the speed with which the AO cell input data can be provided. With

," currently available AU technology, a miniaturized unit of the processor

of Figure 4.7 could be operated at 250 MHz (see Section 4.7). In this

case the system's throughput rate is 0.25 x 109 M-A/sec.

The number of wavelengths Xi is equal to the number of bits in the

input. To avoid an extensive number of Xi (and AU channels) we use a
base system higher than 2. A good choice is base 4 with 4 digits. Then

we obtain 8 input binary bits and 16 output binary bits. In this case
we need 4 wavelengths, 4 AD channels, 7 detectors, and 7 A/D converters.

*Note that in this case we also need 4 input light levels; that is, 0,1,2

and 3.

To avoid extensive A/D requirements, we use time integration for

summation of different number products (i.e., creation of inner products

or vector-vector multiplication). The time integration can be
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accomplished if each detector is followed by a charge integrator. For

clock speeds of 250 MHz, and for summation of 7 products, the A/D

requirements are 7 A/D's with 8 bits each at 29 MRz.
9

4.7 BPAM AO Response Analysis

In this Section we address the speed of the BPAM AO processor and, in

particular, assess the ultimate speed limit of a EPAM-based AO

processor. There are three key components in the system of Figure 4.7:

(1) laser diodes, (2) AO cell and (3) output detectors and A/D's. The

speed limit of the first component is usually in the range of a few GHz.

*For example, the LD53-OUF laser diode manufactured by ORTEL Corporation

has a modulation bandwidth of 8 GHs. This translates to ON/OFF pulses

of 0.187 nsec which in turn translates to data rates of 1 bit/(2 x 0.167

nsec) = 3 Gb/s, assuming RZ data format. Thus, this component allows

throughput rates of the order of 3 x 10 9 M-A/sec. The speed limit of

the last component (detectors and A/D's) depends on whether we use

time-integration (i.e., detection of inner products instead of single

products). For most applications of interest, we require vector-matrix

multiplication or matrix-matrix multiplication. This implies that the

desired outputs are inner products, which in turn implies that

time-integration is preferable. For these applications, the A/D speed

requirement is about 1/time for inner product formation. Assuming that

we are forming inner products that consist of 32 or more products, and

we allow 0.167 nsec per product and 0.167 nsec per zero (each product is
followed by a zero), we find that the time required for the formation of

an inner product is 32x (0.187 nsec + 0.167 nsec) = 10 nsec. Thus the

A/D speed requirement does not exceed 100 M~z which is within the

A. capabilities of the present A/D technology.

*Let us now examine the second component, namely, the AO cell. It can be

shown10 that the modulation bandwidth hf associated with a response

falloff (in dB) of , is
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0.7 7 = s (4.5)
' i nA Wo

where Us is the speed of sound in the AO crystal, nA is the refractive

index of the AO material, and W is the diameter of the input laser beam
at the e-2 points. Let us assume that P = 3dB, U - 6.32 x 103 m/sec,

and nA = 3.31, which corresponds to a scenario with a GaP AO cell (which

is one of the 'fastest' AO cell materials). In this case Equation 4.5

becomes:

* 2.31 x 103 m/sec (4.6)

0

To calculate Af and, thus, the AO cell's 'speed of response,' we need to
know the laser beam diameter W . The diameter W of the focused laser

0 0

beam is given by:

-0 = S.fL  (4.7)

where S is the angular spot radius and fL is the local length of the

lens used to focus the laser beam. The angular spot radius S is given

by

S (D/f)3 1.22A (4.8)2 K(No) n D

where D is the beam diameter incident on the lens, n is the index of

refraction in air and K(No) is an explicit function of index ratio

N° = n'/n (n' is the lens material index of refraction) and lens shape.

In Equation 4.8, the first term represents the contribution of spherical

aberrations to the beam size W . The second term represents the

0
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contribution of diffraction effects to the beam size W . Clearly, we

wish to optimize the value of D to give the minimum value of S. This

optimization has been carried out numerically as a function of fL for

the case of a piano-spherical lens which has the smallest K(N0 ) given by

K(N 0 ) = 1 2 (N 2 - 2No + 2/No). (4.9)32 (No-1)0 0

As fixed data we use: X = 780 pm (corresponding to a high-speed AlGaAs
laser diode), N = 1.51108 (corresponding to BK-7 lens material). The

results of the calculations are given in Table 4.1 which shows the spot

size W as a function of focal length fL together with the optimum
0L

D,D opt, for minimization of Eq. 4.8.

Table 4.1 W as a Function of fL

DL( )  opt (mm) W0 (m)

1.00 0.31 4.14

2.00 0.52 4.92

3.00 0.70 5.44

4.00 0.87 5.85

5.00 1.03 6.18

6.00 1.19 6.47

7.00 1.33 6.73

8.00 1.47 6.95

9.00 1.61 7.16

10.00 1.74 7.35

The smallest possible focal length that we can hope to use with a

state-of-the-art GaP AO cell is 2 mm, dictated by the crystal width
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necessary to provide uniformity in the lapping process of the AO cell's

.. transducer. From Table 4.1 we see that for fL = 2 m, the diameter W, 0

-. of the focused spot is 4.92 pm. Substituting for W = 4.92 pm in

Eq. 4.6, we find that the modulation bandwidth Af of the AO cell cannot

exceed 470 MHz. Thus, each bit in the AO cell will be represented by a

pulse that has a width of = 2 nsec. This corresponds to a data rate

(assuming RZ data format) of

Data rate = 1/(2 + 2 nsec) = 250 Mb/s (4.10)

In conclusion, we find that the component that sets the limit, in the

BPAM AO system, is the AO cell. We also find that, in the best case,

the data rate in the AO cell is = 250 Mb/s which corresponds to a

throughput rate for the BPAM AO system of 250 x 10 6 l-A/sec.

N4i-
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5. CIRCULARLY POLARIZING SAMPLING TECHNIQUE FOR COMPLEX MATRIX OPERATION

In the previous Section we have described Acousto-Optic architectures

which can be used for performing matrix multiplication operations.

Matrix multiplication is the most essential and major operation for our

applications of interest. So far, the elements in those matrices have

been treated as real numbers. In reality, however, the elements are

generally complex numbers. This is an unavoidable situation, especially

V. when the original signals are acquired from heterodyning processes that

yield the quadrature pair. Therefore it is very important to provide an

efficient method of handling complex numbers in order to achieve

efficient matrix multiplication operation. There are two conventional

techniques to accommodate complex numbers; both have serious problems.

The first method is a well-known software solution that realizes the

complex multiplication by first decomposing the operation into four

independent multiplications of real matrices (Figure 5.1) to form real x

real, real x imaginary, imaginary x real, and imaginary x imaginary

terms, and later synthesizes the real part and the imaginary part of the

final product by summing the square terms and the cross terms,

respectively. This method allows us to utilize a matrix multiplier for

real numbers without any modification in the hardware. The disadvantage

of this method is the slow speed which results from the necessity of

reading the buffer memory (which contains the real and imaginary parts)

four times. Thus, it takes four times longer than the multiplication of

real matrices.

The second method is a hardware solution. It requires a major

- modification of the multiplier cells to accommodate complex numbers

(Figure 5.2). Each cell must contain four multipliers and two adders

and must compute the four terms in parallel. The problem with this

method is the tremendous complexity of its hardware. It requires that

the size of each cell be increased by a factor of four and that the

N.--
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number of the input ports be doubled. It is very difficult to realize

such hardware, especially in the AO architectures.

In the following paragraphs we present a unique solution that is able to

maintain relatively high speed and also hardware simplicity at the same

time.

A complex signal carries more information than a real signal.

Therefore, the manipulation of such signals becomes more computation

intensive. However, we can improve the data handling significantly by

arranging the input data in the most efficient way. One major

complexity in handling the complex matrix multiplication is the duality:

every sampled data point comes in the form of a pair, composed of the

real part time series and the imaginary part time series. Our approach

solves the complexity problem by forming a composite but single-time

series that is capable of representing both the real and imaginary

parts. Thus, the elements of the matrix have a single number instead of

a real and imaginary pair. This arrangement can simplify the matrix

multiplication operation very significantly. The approach consists of

two steps: (1) a special sampling process and (2) the use of such

samples in the matrix multiplication.

5.1 Circularly Polarizing (CP) Sampling

A typical data acquisition process is depicted in Figure 5.3. First,

the original signal is received in the antenna and mixed with the local

oscillator of the target frequency by using an ordinary heterodyne

process that yields an analog quadrature pair representing the real part

and the imaginary part. In the conventional technique those signals are

digitized by A/D converters which are strobed by the same clock to

generate a digital quadrature pair in every sampling period, t . In the

-el present CP sampling scheme, the two A/D converters are strobed by clocks

* having the same frequency but phase shifted by 180". Also the sign of

the sample in each quadrature is alternated at every sample. The

5-4V.: . . .. .. .o . .. * ... ..



~.1h

Dwg. 9359A;-S

t= Sampling Interval - t -

Co U A- A AC Ik+ I -I I -I -

'," ~ ~Low-Pass - ADC -- ! ..I- -.tFilter

l j-i-j

"::::.Filter _ j _j
1 sinUt Clk- J_ _

Heterodyne Mixer
and Filter t -

Figure 5.3 Circularly Polarizing Sampling Scheme

,%r

t* 5-8



digitized results are interlaced to form a single string of sampled data

with the interval (1/2) t5 . This composite time series has either a
progressive quadrature (1,j,-1,-j,...) or a regressive quadrature

(1,-j,-1,j,...), depending on the phase of the polarity alternation. We

call the former the right-hand circularly polarizing (RCP) sampling and

the other the left-hand circularly polarizing (LCP) sampling, indicating

the rotational orientation of the phasor. Appendix A shows that either

of the CP sampling schemes is capable of representing both real and

imaginary values of the original signal without loss of information and

free from the aliasing problem as long as the sampling frequency (1/ts)

is greater than the bandwidth of the original signal. It also shows

that RCP and LCP sampled signals are conjugate to each other. The

bandwidth requirement is identical to that of the conventional sampling

case; namely, the Nyquist criterion. The obvious advantage of this data

representation is simplicity. We now show the use of the CP sampled

data in performing matrix multiplication.

5.2 Matrix Multiplication Using CP Sampled Data

We st discuss a correlation operation as an example of the simplest

case of matrix-vector multiplication. Later we address the more general

case.

Consider a correlation operation function y(r) for signals h(t) and x(t)i where

y(r) = J h*(t-r) x (t) dt (5.1)

and h(t), x(t), and y(r) are continuous complex functions and h*(t) is

conjugate to h(t). We can translate the situation to the discrete CP

sample domain by

y= ht_ xt  (5.2)
t=1

8-0
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where y, h, and x are CP sample functions and t and r are integers.

Suppose the correlating function ht has finite duration, say, the

duration of four data points. Then we can express the correlation

operation in the form of a multiplication between the band matrix H with

bandwidth 4 and the vector X (see Figure 5.4). Now the input function

xt is a CP sampled function carrying the sequential quadrature

information (l,j,-l,-j,...), and the correlating function h*(t) is the

conjugate of ht. Therefore, it has the corresponding LCP quadrature

sequence (1,-j,-l,j, ...). The first element of the output vector yl is

the result of the inner product between the first row of the matrix H

and the vector X, or

1st element: (h1) (X1)+(-jh 2) (jX2)+(-h3) (-X3)+(jh 4) (-jX4). (5.3)

Note that the phase of all the product terms turns out to be 0.

Therefore, the first element can be expressed as:

Y1 = h1 X 1  h+h i + h 3X3 + h4X4  (5.4)

It is clear that this inner product calculation requires only the

multiply/add capability of real numbers. The second element in the

-i output vector is calculated similarly.

2nd element: (hl)(jX2) + (-jh 2)(-X3) + (-h 3 )(-jX 4 ) + (jh 4 )(Xs) (5.5)

In this case, the phase of the entire term is a constant 90*. Thus, it

is appropriate to represent the second element as:

jy 2 = j(h1X2  h2X3 + h3 X4 + h4X5) (5.6)

.8-"
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Figure 5.4 Correlation Operation Using CP Sampling Approach
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so that the value Y2 still remains real. In a similar way, we can

obtain the third and fourth elements:

Y3= -(h1X3 + h2X4 + h3X5 + h4X6) (5.7)

-jy 4 = -j(hlX4 + h2X5 
+ h3X6 + h4X7 ) (5.8)

It is clear that the rest of the elements can be obtained in the same

way. In any of these inner prcduct calculations, none of the complex-

valued multiplication capability is needed, owing to the CP sampling.

The output vector is again in the form of CP samples.

Thus, we see that once we represent the input complex signal in CP

sample form, the output is also in CP sample form, and we can carry out

the entire operation in the CP sample domain. The method treats all the

numbers as real numbers and the quadrature information is coded in the

data position itself.

In the case of the more general shift variant system, the matrix is not

necessarily banded and there is no repetition of the same series from

row to row as is the case in correlation or convolution operation.

However, the matrix-vector multiplication will still be accomplished in

the same manner as long as the data position represents the proper

quadrature. An example of positional coding of phase is shown in

Figure 5.5. An interesting characteristic of the matrix is that the

quadrature is progressing along the two-dimensional matrix and constant

along the diagonal orientation. As long as this quadrature based

pattern is used, we can perform multiplication of any matrices, using

only real numbers.

In summary, we believe that this new CP sampling approach solves, to a

great extent, the problems of the matrix-vector multiplication for

~5-9
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complex numbers in a very systematic way. It is important to note that

the total operation is carried out in the CP sample domain, and that it

gives us the freedom to cascade such operations, or the freedom to

iterate the operation by feeding back the result of one multiplication

to the next without an intermediate domain conversion process.

8,1
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6. PERFORMANCE OF HIGH ACCURACY ACOUSTO-OPTIC PROCESSORS

In this Section we consider the performance of the high accuracy AO

processors which we have developed (Section 4). It is of interest to

compare these systems with typical, state-of-the-art electronic devices.

In describing system performance, one measure that is usually employed

is the throughput rate (TR). However, when comparing different systems,

it is also of interest to examine the efficiency of the system (SE),

defined as the throughput rate per unit power, along with the net

multiplication speed (MS). The efficiency measure is important because

it demonstrates the power consumption necessary for a given TR. The

multiplication speed measure is useful because in certain applications

high US rather than high TR is important.

The comparison analysis is done by calculating the SE and MS figures for

various families of state-of-the-art electronic multiplier

accumulators as well as for typical space-integrating and/or time-

integrating AO processors that employ DMAC or BPAM. These calculations

are used as the basis for a simple, first-order, comparison which gives

a clear picture of the computational competitiveness of AO processors.

6.1 Performance of Electronic Multipliers

Current, state-of-the-art, electronic competition comes from three

families of electronic integrated circuits: (a) CMOS, (b) high-speed,

Silicon-based, VLSI, and (c) GaAs.

In the first category we have a variety of commercially available

multiplier/accumulator chips such as: (a) the Toshiba T6354 16 input

bit, 32 output bit (16/32 bit) chip and (b) the Logic Devices LMA 1009-1

16/32 bit device. The first device has an MS of 10 MHz and a power

consumption of 100 mW. This corresponds to an SE of 100 x

106 V-A/sec.W. The second device has an MS of 15 MHz with a power

ql6-1



consumption of 125 &W. This corresponds to an SB of 120 x

106 M-A/sec.W.

In the second category we have various high-speed VLSI devices which are

usually custom made for specific signal processing applications and can

contain a large number of multiplier/accumulator units. Westinghouse's

typical high-speed 8/16 bit VLSI is capable of an MS of 30 zH while

consuming about 250 .W. This corresponds to an SE of 120 x

10 5 M-A/sec.W.

Finally, in the third category, we have a number of CaAs LSI devices an

example of which is the Rockwell11 8/18 bit multiplier. This device

forms the 16 bit product in 5.25 nsec which corresponds to an MS of 190

Mss. Power dissipation is about 1.4W. Thus, the device's SE is 135 x

106 M-A/sec.W.

The results of the above calculations are compiled in Table 6.1. From

this table we see that although the MS varies from family to family

(10,30,190 MHz, respectively) the SE remains about the same (" 120 x

106 M-A/sec.W).

6.2 Performance of DMAC Based AO Processors

We begin the analysis of AO processors by considering DRAC based

systems. We first examine the performance of the space-integrating

single detector AO system of Section 4.1. We choose to consider this

. system first because it represents a typical example of the ability of

optics not only to multiply but also to compress (i.e., add) data.

Let us assume that the input accuracy is 8 bits. In this case and for

U = 32 the maximum value of the output convolution is 8 x 32 = 256,

which requires an 8-bit A/D. State-of-the-art (chip level) 8-bit A/D's
goperate at 30 MHz and consume 120 &W of power . Use of 3 such A/D's in

conjunction with an electronic data deflection scheme allows a

o.e
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conversion rate of 90 MHz at a power consumption of about 500 mW. Such

a rate allows data periods of about 11 nsec. The convolution operation

is completed in 2N-1 = 15 cycles and thus the MS is 8 Ms and the TR is

192 x 10 8 M-A/sec. For the purposes of this analysis we assume that the

bulk part of the power consumption comes from the laser and the A/D's.

A detailed analysis shows that the laser consumption is about 5 W.

Thus, the total power consumption is 5.5 W and the SE is 35 x

106 M-A/sec.W. This is a rather poor figure and is partially due to the

low MS figure. To improve this figure let us assume that 15 A/D's are

used so that effective conversion rates of 450 MHz are achievable. In

this case we can use clock frequencies of 900 MHz and have an S of

30 MHz, a TR of 960 x 10 M-A/sec and an SE of 128 x 106 M-A/sec.W.

Comparison of these figures with those of the electronic cases, however,

shows that the AO system does not offer any significant SE or MS

advantage.

We now examine a different AO system architecture, specifically an

array, non-compressive processor. This system is similar to the one of

Figure 4.2, but it uses a cylindrical lens (with power along x) in

conjunction with M detectors for the individual computation of the M

products. In this case, for an 8/16 bit system, the maximum convolution

value is 8 which requires a 3-bit A/D. We assume that a set of 8-level

comparators will be used because of the relatively low resolution

required. For 8-level comparison, 3-dual level comparators are needed

along with some dedicated logic. A typical example of a high-speed

comparator is the Advance Micro Devices AM5687 which allows us to build

an 8-level comparator circuit which operates at about 300 M~s and has a

power consumption of about 800 mW. This allows a clock frequency of

800 MRs which translates to an S figure of 20 MIs. Thus for M = 32,

the system's TR is 840 x 10 M-A/sec. To calculate the SE figure we

need to calculate the laser power. If we use one laser diode per AO

channel we find that 5 mW, 20% efficient, laser diodes are sufficient.

6-3
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* Table S.1

TYPICAL PERFORMANCE OF ELECTRONIC MULTIPLIERS

I/0 US POWER SE
FAMILY TYPE (BITS) (MHz) () (M-A/sec W)

CMOS Toshiba T6354 16/32 10 0.100 100 x 106

CMOS Logic D. LUAlO09-1 16/32 15 0.125 120 x 106

High Speed Westinghouse 8/16 30 0.250 120 x 106

VLSI

GaAs Rockwell 8/16 190 1.4 135 x 106

.N5N
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In this case, the total laser diode power consumption is 25 x 32 aW =

2.. 800 ml and the total power consumption 28 W. This gives an SE figure of

23 x 108 M-A/sec.W. Comparison of the system's performance figures with

those of the electronic counterparts shows that the AO system, once

again, does not offer any significant advantage.

We now examine the time-space integrating systolic AO processor of

Section 4.3.

For minimum detection errors, and with state-of-the-art components, a

8/18 bit system with N = K = 16 and H = 8 is realistic. The TR of such a

system depends on the data loading time. Currently available AO cells

allow for bit widths of 2 nsec. Thus, each multiplication requires

2 x 8 x (2 + 2) n-ec = 64 nsec. This corresponds to an MS of 15.6 MHz

and a TR of 8 x 8 x 15.6 x 10 M-A/sec or 10 M-A/sec. To calculate the

power consumption we take into account the laser diodes and the A/D's

only. An 8 x 16 laser diode array (with 5 .W, 20% efficient diodes)

requires an average power of 1.6 V. The power consumption of the A/D's

depends on the number of A/D's used and the operating frequency. For

full use of the system's MS we need to use a combination of serial and

parallel detector read out. With such a scheme we need 84 7-bit A/D's,

32 -bit A/D's, 16 5-bit A/D's, etc., that operate at 18 MHz. If we use

the 30 M~s 120 .W 8-bit A/D's we can replace the 64 7-bit A/D's (i.e.,

two elements per A/D). The total power consumption of these devices is

3.84 V. This figure represents - 70% of the total A/D power

consumption. Thus, for our purposes, the total power consumption is

- 7.1 W and gives an SE of 141 x 108 M-A/sec.W. Comparing these figures

with those of the electronic competition (Table 8.1) we find that the AO

system does not offer any sixnificant performance advantage.

In conclusion, we see that the DAC-based architectures do not offer any

significant performance advantages (Table 6.2) when compared with



C. Table 6.2

TYPICAL PERFORMANCE OF DUAC AO SYSTEMS

I/0 MS POWER SEC
TYPE (BITS) (MHz) (W) (M-A/sec W)

SPACE INTEGRATING 8/16 6 5.5 35 x 106

(1 Detector, 3 A/D's)

SPACE INTEGRATING 8/18 30 6.8 128 x 106

(1 Detector, 15 A/D's)

SPACE INTEGRATING 8/16 20 28 22.7 x 106

(32 Detectors, 32 Comparators)

N TIME/SPACE INTEGRATING 8/16 15.6 7.1 141 x 106

'-'

.
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their electronic counterparts (Table 6.1). Similar performance is

characteristic of other architectures that have appeared in the open

literature but for reasons of space have not been included in this

Section. There are two main factors which limit this performance.

First, the algorithm itself takes 2N-1 cycles to complete the

* convolution. This results in the requirement of at least one bit-serial

propagation and thereby substantially reduces the TR (which in principle

can be high). Second, optics performs only part of the full,

high-accuracy multiplication, namely, the convolution, and subsequently

requires the 'help' of power-consuming electronics (e.g., A/D's) to

complete the operation. This results in an increased power consumption

4and a decreased SE.

Based on the above observations we conclude that in order to improve the

US and SE figures, we need to decrease the time required for completion

of the convolution and eliminate the A/D's.

6.3 Performance of BPAM Based AO Processors

Since the BPAM operation requires one clock cycle, the system TR is

-J equal to the speed with which we can address the AO cell. In

Section 4.7 we showed that at best the AO device can be operated at

about 250 MHz which corresponds to a TR of 250 x 108 M-A/sec. and an MS

of 250 MBz. The power consumption of the system depends on: (a) the

number of bits in the input and (b) the number of A/D's used. To avoid

an extensive number of wavelengths we need to use a base system higher

than 2. If we use base 4 with 4 digits then we have a processor of

8/16 bits. In this case we need 4 laser diodes, 7 detectors and

7 A/D's. If we use the 8-bit 30 MHz 120 mW A/D's, then we can read out

the output at a rate of 29 MHz. Each such output will correspond to an

inner product which is the sum of 8 number products (the summation is

performed in time, at the detectors). In this case the A/D power

consumption is 7 x 120 mW = 840 mW. Adding to this figure the power

e-7
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consumption of the laser diodes (4 x 25 mW = 100 0) we find that the
power consumption of the system is 940 mW. This corresponds to an SE of

266 x I0 M-A/sec.W.

Comparing the MS and SE figures of the BPAM-based AO system with those

of the DMAC based AO systems (Tabla 6.2), we find that the S figure of

the BPAM system is higher by about an order of magnitude. This

improvement is expected since the time requires for the BPAM is reduced

by a factor of 2N-1. On the other hand, because S is increased, one

might expect SE to increase proportionally. This is not the case,
however, because SE is increased only by a factor of 2. This is due to

the fact that BPAM requires 2N-1 output detectors and A/D's for the

detection/conversion of a single product. This translates to additional

power consumption which partially offsets the S improvement.

If we now compare the performance of the BPAM-based AO system with that

of the electronic competition (Table 6.1), we find that the BPAM system

has a MS figure that is higher by about an order of magnitude than that

of Silicon-based devices. However, this advantage essentially

disappears when compared with GaAs devices. Thus, once again, we find

that for all practical purposes the AO systems do not offer any

significant performance advantage (e.g., an order of magnitude
improvement in SE and/or MS). One of the main reasons for this behavior

is the fact that the available algorithms (both DMAC and BPAM) require

power-hungry post-detection electronics (i.e., A/D's and comparators)

for conversion of a multi-level analog signal to a binary output.

A method of overcoming this problem, is to eliminate the presence of

analog signals by employing binary valued Ai, Bi, i=0, ..., N-i input

levels. In this case the various products AiBi can take only two

values, 0 and 1. This implies that, in the absence of an optically

implemented product summation, the N2 detectors (one for each product)
simply detect the presence or absence of light. Subsequently, their

,r; . -s
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binary outputs are used to directly drive N2 pulse-counting electronics

(e.g., counters) and not A/D's or comparators. Once these devices count

.i such pulses (for an M-element inner product) they drive properly

arranged digital adders that perform the AiB i product summations. The

outputs from the adders subsequently drive a shift-register/accumulator

that performs the final weighting and summation operations. An example

of such an electronic arrangement is shown in Figure 6.1 for the case of

a 2-bit multiplier.

In optimizing such an architecture, it becomes immediately apparent

that, aside from its delay properties, the AO cell is used as a simple

optical switch. In fact, to provide this switch function, the AO cell

is unnecessarily complex because: (a) it requires RF carriers, mixers

and amplifiers, (b) it requires a rather complicated optical system, and

(c) it requires an 8-channel optical multiplexer (for a 8/16 bit

system). A far simpler and faster system can be realized by the use of

two sets of N laser diodes in conjunction with 2N detectors and N2 AND

gates. An example of a possible arrangement of such a system, is shown

in Figure 6.2 for a 2-bit multiplier. Other possible arrangements

involve the use of fiber-pigtailed lasers in conjunction with the

fiber-optic 1:N splitters, or overlapping laser beams with N2 detectors

(located at the cross points) in conjunction with threshold detection,

etc. Note that the speed of the optical part of any possible

implementation of the system can exce~d 3 GB. even assuming the use of

state-of-the-art components. Thus, the throughput limiting factor is

the AND gates together with the counters that follow them. Finally, a

simple analysis shows that a scheme of parallel input counters, which

are used in order to obtain the sum of l's for each convolution point,

is preferable to the scheme shown in Figure 6.1. This is the well known

Dadda1 2 scheme for implementing a fast many-bit (> 16/32) digital

multiplier.

6-9
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Thus, we have formed a simple multiplier system that does not require

any A/D's or comparators and which forms the AiBi products in a single

clock cycle. The factor limiting the speed of the device is the

electronics (- 200-300 M1s with HECL II logic) and not the optics

(> 3 GHz). A close look at the device, however, reveals that optics is

used only for the high-speed interconnections (between data source and

multiplier) and not for the actual product computation which is

performed exclusively by dedicated digital electronics. Thus, the

efficient implementation of binary-valued BPAM in conjunction with

binary detection results in a system where the computational role of

optics is practically zero. We discuss such a device in more detail in
Section ".

6.4 Performance Comparison Conclusions

In this Section we have examined the performance of the AO processors

from the points of view of system efficiency and multiplication speed.

It is found that DMAC-based AO systems do not compare favorably with

existing state-of-the-art electronic multipliers. BPAM-based AO

systems, although superior to DMAC-based systems, have a performance

*, which is about the same as that of existing GaAs devices. An attempt to

use BPAM systems with digital counters, instead of A/D's or comparators,

results in a system in which optics is used for the high-speed

interconnections but not for computations.

'..1
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7. OPTICALLY ADDRESSED ELECTRONIC DIGITAL MULTIPLIERS

7.1 Introduction

In the previous sections we have examined techniques that allow Acousto-

Optic processors to perform digital-accuracy arithmetic computations.

We have shown that when the multiplication speed and system efficiency

figures are used as performance measures, the AO systems have no

significant advantage over existing state-of-the-art digital electronic

multipliers. However, one way in which optics can be used to improve

the performance of electronic arithmetic units is the natural ability of

optics to perform interconnections. There are several reasons for this

and they have been documented in the excellent paper by Goodman

et al.:13 (1) optical interconnects (01) allow freedom from capacitive

loading effects thus allowing high speed signal propagation, (2) 01
offer immunity from signal interference effects which allows for massive

2-D interconnects, (3) 01 do not have to be planar (as opposed to

4 electronic interconnects), (4) if open space 01 are used, then some

reprogrammability can be achieved via 'dynamic interconnections' and

(5) optical signals can be injected directly into electronic logic

devices.
14

The above reasons clearly show the advantages of 01 over their

electronic counterparts. This chapter addresses the use of 01 in
processors that can be applied to the APAR problem. In Section 7.2 we

2briefly discuss the concept of array processors for matrix-matrix

multiplication. In Section 7.3 we address some practical issues which

are necessary for the realization of optically-interconnected array

processors. Finally, in Section 7.4, we discuss the prototype

optically-addressed ECL multiplier which we have fabricated.



7.2 Optically Interconnected Array Processor for Matrix Multiplication

A large number of algorithms (or parts of algorithms) used for the APAR

problem can be expressed in terms of matrix multiplications. Typical

examples can be found in some of the algorithi used for the eigensystem
solution, presented in Section 2, as well an in the Gram-Schmidt

technique1'2 presented in Section 9. Consider an example of matrix-

matrix multiplication. Let matrices A and B each of dimensions MxM be

represented by:

A = [aij] (7.1)

and

B = [b..] (7.2)

" Their product C is given by

C = A x B (7.3)
S.

where

cij = E aipb jl (7.4)

Another way of expressing C is through outer products AiBi; i.e.,

C = AIB1 + A2B2 . ... + ABI) (7.5)

"S.

'7-2



, o

.1

b4i 4 b43, b4

b2l b22  b23 b24

l b, b,2 b13 b14

* if. if. ,,

V C14 013 012 C111

a24 a23 C22 021

0334 (33 (32 33

.Ud 044 043 042 0341

Jiw .1 SquaretP Arraty Proceuuor for Matrix-Matrix Multiplicatin* Figure,. °- °-- 4 >--

s-



A simple processor that implements Equation 7.5 is shown in Figure 7.1,

and consists of a square array of MxM multiplier-accumulator units

(MAU). In this system, the column data A. and row data B. arei1 1

broadcasted instantly along the columns and rows of the array

processor. At each clock cycle there is a new outer product formed

which is consequently added to the previous product. In this fashion

the total number of cycles needed for a full matrix-matrix

multiplication is M. This design is not suitable for VLSI circuit

design because it needs global communication.15 Thus, when VLSI

implementation is desired, one has to configure the processor of

Figure 7.1 in a systolic architecture so that only local

interconnections are used. In such a scenario, the number of cycles

needed for a full matrix-matrix multiplication depends on the specific

systolic implementation used. For a square array, similar to the one

of Figure 7.1, this number is of the order of 2M. Thus the 'globally

interconnected$ array of Figure 7.1 offers the advantage of improving

the processing speed by a factor of 2. Note that when high frequency

operation is desirable ( 500 MHz) the locally interconnected array

processor probably requires the use of 01 for data transmission. This

is because at such frequencies the number, paths, lengths, and

terminations of microstrip and strip lines are extremely critical in

order to avoid effects such as capacitive loading, delays,

overshoot/undershoot etc (an extensive but simple treatment of this

issue can be found in Reference 18). Thus, since 01 seem to be

necessary for high frequency operation, it is logical to use 01 in a

global rather than local fashion.

7.3 Optical Interconnects for Array Processor

In this section we analyze the 0I for the array processor of

Figure 7.1. As we have described in the previous section, the column

data Ai and row data Bi need to be broadcast instantly across the

array. This implies that we need to address M different MAU inputs

7-4
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with the same data. This in turn implies that we need to split the

data 1:M. Thus, we need to address a simple technique which uses

state-of-the-art technology and which allows us to drive M optical

channels from one optical source. Before we describe such a technique

it is of interest to discuss a technique for coupling the optical

source (laser diode) into a fiber.

A schematic drawing of a fiber-optic adapter which we have developed

for efficient coupling of the output power from a Mitsubishi ML4402

laser diode into a fiber of core 100 pm is shown in Figure 7-2. The

output beam from the laser is elliptical with beam divergencies of 33*

and 11, full angular spread at the half-power points, along the major

*and minor axes, respectively. To collect this angular spread directly

into a fiber without the use of lenses requires that the fiber end face

be positioned much closer to the diode emitting surface than the

*. windowed laser package allows. Accordingly, we have removed the window

and protective can from the laser to allow complete access to the

emitting surface.

.For the fiber, we have chosen a glass fiber of 100 # core diameter and

140 pm cladding diameter, since this represents a fiber having one of

the highest aspect ratios readily available. Although this factor is

not critical for the multiplier application (see Section 7.4), it is an

important parameter when the outputs from many fibers are combined in a

a. fan-in or fan-out as is the case of the array processor or the case of

the application to look-up tables discussed later in Section 8.3.

Thus, to intercept all the laser output, out to the half-power points,

into a 100 pm core fiber requires that the emitting surface-fiber face

'I, separation be less than 160 p.. The fiber-optic adapter shown in

Figure 7.2 accomplishes this, taking into account the manufacturing

tolerance levels in the height of the diode surface above the base of

the laser.
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9.

The adapter consists of a plexiglass rod bored at one end to be a slide

"- fit to the diameter of the laser diode base. The diode is inserted

into the adapter until it bottoms on the machined step in the adapter

and is cemented to the adapter using UV-cured epoxy. In this way the

diode emitting surface is precisely located (within diode manufacturing

tolerances) with respect to the step in the plexiglass adapter. The

cemented diode sits completely within the adapter to allow convenient

attachment of the insulating adapter to a circuit board without danger

of shorting the diode base (which forms one of the diode connections)

* to the board. The other end of the adapter is machined and threaded to

accept (in this case) a standard Simplex ferrule connector. The length

of the adapter above the step (which locates the base of the diode) is

such that a ferrule, polished to its standard length, when inserted

into the axial hole in the adapter is positioned on axis and with the

face of the ferrule located within the distance of 160 pm required to
* N intercept the divergent output beam of the laser. This adapter has

proven to be a simple, efficient, and reproducible means of coupling

the output from the laser diode into a 100 jm-core fiber. All of the
hundred diode-adapter assemblies fabricated so far have given the full

maximum diode output of 5 mW measured at the end of the fiber for diode

currents < 10 mA above the threshold current.

Splitting one optical channel into M optical channels can be achieved

via the use of: (1) holograms, (2) star couplers in conjunction with

fibers and (3) fiber-optic splitters that use resilient-ferrule

connectors. The first approach is practical in applications where the

if optical channels distribute their information in a relatively small
2area; e.g., 100-400 cm . The second and third techniques allow signal

distribution without any practical restriction in area or path length.

Star-couplers, however, are more expensive and have a higher loss (for

40). For these reasons we have decided to use the resilient-

ferrule connector approach (RFC).

7-7
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In the RFC approach (Figure 7.3) the optical source, usually a laser

diode, is coupled to a relatively wide core diameter fiber (e.g., 420

am). The output of the wide fiber produces a uniformly distributed

spot of light. We then pack a number of smaller diameter fibers into a

resilient-ferrule connector (Figure 7.3), e.g., 7 fibers of 140 Pm

- cladding and 100 am core. Thus, we create an effective active area of

380 #m diameter which is covered by the cores of the fibers. Each

fiber receives nearly the same amount of light. The other end of each

fiber is terminated in a separate connector which is used for the MAU

connection. Note that by reversing input/output ends, we can use the

RFC arrangement as an M:1 combiner. This is exactly the way we use it

for the look-up table residue approach we discuss in Section 8.3. Note

that the RFC technique has losses that are comparable to those found in

connectors (about 0.5 dB) and is less costly since it eliminates the

expense of the coupler itself.

For efficient coupling, we need to maximize the core-to-cladding ratio

(CCR) of the small fibers as well as the total effective receiving area

of the fiber bundle in the RFC (shaded area in Figure 7.3). The former

is needed in order to maximize the effective receiving area per fiber.
* The latter is necessary in order to minimize the amount of unused

light. Maximizing the CCR implies that we avoid, if possible, the use

of single-mode fibers which have a very small CCR of the order of 0.04

(e.g., 5 pm core and 125 um cladding). Note, however, that single-mode

fibers are the only choice if multi-Gb/s data rates are needed. In a

multi-mode fiber, typical CCR's are of the order of 0.7 (e.g., 100 #m

core and 140 #m cladding). For these fibers, and at X = 850 nm, the
typical transmission bandwidth is about 100-200 MHz-Km. For our

application, maximum distances of the order of a meter are expected.

For these distances effective data rates of > 1 Gb/s can be easily

achieved. In fact, we have shown that for 2 meters of 50112 AMP fiber,

data rates of > 1.2 Gb/b an be achieved. Maximizing the totaJ
receiving area is equivalent to efficient fiber packaging One L-
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easily show that for efficient packaging, a symmetric fiber arrangement

similar to the one shown in Figure 7.3, is needed. In such an

arrangement, the total number of fibers M0 and the overall diameter D

are given by:

M =1 + 3k (k+ 1) (7.6)

D = (2k + 1) d (7.7)

where k = 1,2,3,... and d is the cladding diameter. In this case the

aspect ratio A of the total area is

A0 = (1 + 3k (k + 1)]a/(2k + 1)2 (7.8)

where a = (dl/d)2 is the aspect ratio of a single fiber of core

diameter d1. In Table 7.1 we show, as a function of k, the total

number of fibers M0, the array diameter D, the overall efficiency V,

and the core diameter d2, of the laser coupling fiber. For these

calculations we assume that each fiber in the bundle has a 100 pm core

and a 140 pm cladding, i.e., a = 0.51. For demonstration purposes, we

have implemented the cases for k = 1 and 2 using 50112 AMP 100 pm/140

U.#m fiber. Typical output radiation patterns are shown in Figure 7.4.

In both cases we obtain coupling efficiency results that are in

excellent agreement with the figures of Table 7.1. Note that our

experimental results show that for M = 16 and 19 there is little

difference in V. Thus, for all practical calculations involving U =16

one can use the M = 19 data. Also note that because of practical

reasons (availability of proper fibers, connector dimensions, etc.)

. =19 is probably the upper limit of the RFC technique.

S7-10
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Table 7.1

k m °  D -) dL( r )

1 7 420 0.40 380

2 19 700 0.39 660

3 37 980 0.39 940

4 61 1260 0.38 1220
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Figure 7.4 Output Radiation Pattern from 1:11 RFC
Splitter. with M 7 and 19.
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We now discuss some issues associated with the amount of optical power

necessary for the interconnections. Let us assume that we are dealing

with a 18 x 16 array processor which we intend to interconnect using

discrete detectors. For high data rates (e.g., several hundreds of

MHz) we need the detector to interface to an impedance of about 50

ohms. Thus, for a 1V swing, the detector needs to provide 20 mA.

Current state-of-the-art high speed (rise time 0.5 nsec) pin diode

detectors (e.g., Motorola MFOD 1100) have a responsivity of 0.3 /A/#W.

Thus, we require about 67 mW of optical power incident on the detector.

P Since M = 18, the individual fiber coupling efficiency is 0.39/16 =

0.024. Thus, the total optical power incident on the RFC needs to be

67/0.024 0 = 2.8 W. This power is beyond that obtainable from state-

of-the-art laser diodes so that buffers must be incorporated between

detectors and MAU inputs. A typical example of such a buffer unit is

the Advance Micro Devices Am 6887 comparator which allows for data

rates of up to 300 MHz. This device requires a minimum input of 5 mV

which corresponds to a total laser power of 14 m0. State-of-the-art

low-cost laser diodes, such as the Hitachi HLP 1400, can deliver up to

20 mW at data rates in excess of 800 Mb/s. It is thus our conclusion

that if the discrete detector/buffer approach is used in conjunction

with existing, low cost technology, then the 01 for a fully parallel 16

x 16 array processor with data rates in excess of 300 Mb/s per channel

can be built. If the electronic MAU's are capable of following the

above data rates, then the system MS will be 300 MHz and the total

throughput rate will exceed 18 x 18 x 300 x 106 M-A/s = 76 x 109 M-A/s

which is obviously a tremendous processing capability. Note that if

the detectors can be integrated with the MAU chip, then the effective

impedances will increase perhaps by an order of magnitude. In this

case the buffers are not needed and the 01 that consists of existing,

S low-cost laser diodes/RFC/detectors can deliver data rates of the order

of 1 Gb/s.

7-1
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In the following section we present an experimental, optically

addressed, 4 x 4 bit ECL MAU that uses components similar to the ones

we have been considering.

7.4 Prototype Optically Addressed ECL Multiplier

To illustrate the capability of optical interconnections we have

fabricated a 4x4 bit optically addressed multiplier based on ECL logic.

The complete arrangement is shown schematically in Figure 7.5.

The optical data generator consists of eight pulsed laser diodes

(Mitsubishi Type ML 4402) which provide the two 4-bit words. These

laser diodes are driven from a common pulse-generator source (Hewlett

Packard Type 8082A) which is fanned out to eight lines each of which is

connected to the transistor drive (Motorola Type 2N5943) of each laser

diode. Each laser diode is housed in a fiber optic adapter (described

in Section 7.3) which accepts a standard Simplex fiber connector. This

optical data generator may be driven at the maximum frequency of the

pulse generator (250 MHz for a 50% duty cycle) thereby providing the

equivalent of a 500 MHz binary (0,1) data rate.

The optical interconnect consists of eight fiber optic lines fabricated

from 100 #m core/140 pm cladding cable (AMP 50112). These lines are

provided with Simplex connectors at either end for coupling the laser

diode output from the data generator board to the optical interface/ECL

multiplier board.

A schematic diagram of the circuit used for the optical interface/

multiplier is shown in Figure 7.. The optical interface is provided

by pin diode-comparator combinations. Each optical input signal

corresponding to a single binary bit is fed to a pin diode detector

(Motorola Type MFOD 1100) housed in a Simplex fiber connector mount to

accept the fiber-optic interconnection. The output from each pin diode

7-14
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Figure 7.5 Schematic Diagram of the Optically Addressed Multiplier
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is in turn fed to a comparator (AMD Type AM 6687) which generates a

standard ECL logic pulse provided the amplitude of the output pulse

from the pin diode exceeds a preset threshold level.

Insofar as the multiplier itself is concerned, there are several

architectures available for configuring electronic gates to perform

multiplication.17  For the present demonstration we have chosen to use

the Pezaris arrangement18 which utilizes full adders as shown

schematically in Figure 7.7. Thus, for two 4-bit binary numbers A =

a3a2ala0 and B = b3b2b1 bo, the product Z = A*B = (a3a2ala O)e(b3b2b1bo)

may be written in the form

a3b- a2bo  a1b0  a0bo

,. a3b1  a2b1  alb1 ajb1

"' a3 bI  a2bI  alb I ab I

a~b2  a2b2  a1b2  aob2

_ Z7 Z8 Z Z4 Z Z2 Z ZO

The building block of the multiplier is a 2x1 bit array multiplier from

the MEL Series (Motorola Type VC 10287) which is a dual package each

-> half incorporating two input AND gates, for forming the binary bit

products followed by a full adder for summing the products, with

internal carry lookahead for high speed operation. The logic diagram of

*" the array multiplier block is shown in Figure 7.8 and is particularly

suited for use in the Pezaris architecture. Thus, the data output from

the interface comparators are fed to the inputs of six MC 10287 packages

the outputs of which provide the products Z1 to Z7. The least

significant bit product Z0 = a0b0 is provided by a single AND gate.
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A strobed latch/LED display provides visual readout of the product from

the multiplier. Each of the product bits from the multiplier is fed to

a latch (Motorola Type 10175) which is strobed by a suitably delayed

pulse derived from the same pulse generator used to produce the optical

data. Thus, the latches are strobed synchronously with the data, each

output pulse from the latches driving the specific LED associated with

each product output bit.

Layout and fabrication of the double-sided boards was carried out on a

CAD/CAM facility. In the board layout, particular attention was paid to

the design to ensure high-speed operation. A photograph of the

S assembled boards is shown in Figure 7.9.

For the purpose of exercising the multiplier, the input words A and B

are varied by connecting the appropriate fiber-optic lines between the

data-generator and multiplier boards. A composite record showinh, the

input/output pulse responses from the multiplier board is shown in

Figure 7.10(a). The upper trace on this record corresponds to the input

:data-bit pulse from the interface comparator (all eight pulses are

coincident in time) followed, in sequence, by the eight output bit

pulses corresponding to the products Z0 to Z7, respectively. This

record has been obtained by varying the input word A keeping the full

input word B (i.e., b3 = b2 = b1 = b0 = 1) fixed. From Figure 7.10(a)

it may be seen that the delay time between the input data pulse and the

output product pulse increases from Z0 through Z6 with the most

significant bit Z7 (the final carry bit) delayed somewhat less than Z6.

The various delays measured from Figure 7.10(a) are compared with those

expected from the multiplier architecture used in Table 7.2. For the

latter, we have characterized the delays in terms of the unit gate delay

time A. Thus, the propagation delay times of the AND, OR, and XOR gates

incorporated in the multiplier blocks are 2A, 2A and 3A, respectively.

Taking a value of A = 0.3 ns (corresponding to a propagation delay of

an ECL NAND gate), we obtain the values shown in the last column of

7-20
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Figure 7.10 (a) Composite oscilloscope record showing in sequence from
top to bottom, the relative delays between the input
data bit pulse, and the various output bit pulses
corresponding to the products Z0 to Z7 , respectively.

(b) Composite oscilloscope record showing in sequence from
top to bottom, the input data pulse and output bit
pulses corresponding to Z (minimum delay) and Z
(maximum delay) for maximum operating speed of t~e
multiplier (220 MHz).
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Table 7.2

Input to Z Propagation Delay Times

Estimated
Measured

(ns) A ns (A = 0.3 ns)

Z0  2 2 0.6

Z 3.5 8 2.4

, 2  4.5 16 4.8

Z3  6.5 26 7.8

. 4  8.5 30 9.0

Z 8.5 31 9.3

z 6 11 35 10.5

z 7  7.5 33 9.9

72
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Table 7.2. These are in good agreement with the measured values. The

total multiplication time is dependent on the value of the input words.

The maximum time is evidently that for which the product includes the

26 (Z6) bit. For the present arrangement this propagation delay is

measured to be 11 ns which is in reasonable agreement with the

manufacturer's specification of 14 ns.

In characterizing the performance of multipliers we wish to distinguish

between the total multiplication time and the throughput rate. In the

present arrangement, the maximum throughput rate is governed by the

requirement that the data bit pulse be sufficiently wide that all of

the product bit pulses be present during the strobe pulse. Thus, the

minimum pulse width is given by the maximum difference in propagation

delay among the product bit pulses, i.e., the difference in propagation

delay for Z0 and Z . From Table 7.2 this is measured to be 9 ns.

Thus, the present multiplier has a maximum data throughput rate of 110

MHz. However, we note that if a truly pipelined architecture is used

the throughput rate may be significantly increased. While we are not

able to do anything in the present demonstration at the chip level we

note that we can exercise the board at a higher data throughput rate

than is dictated by the strobe requirements. An example of this is

shown in Figure 7.10(b) which shows from top to bottom, the input data

pulse, the Z0 output bit pulse, and the Z6 output bit pulse,

respectively, where the input data pulse width has been minimized while

still maintaining all output bit pulses. From Figure 7.10(b) it may be

seen that a data throughput rate of 220 MHz is possible if suitable

delays are introduced in the circuit so that the output bits can be

strobed simultaneously. This throughput rate is limited both by the

comparator delay time in the optical interface and by propagation

delays in the multiplier chips themselves.

In conclusion, we see that existing fiber-optic and electronic

technology can be used in order to fabricate a fully parallel optically

7-24
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interconnected square array processor for matrix-matrix multiplication.

With this existing technology we expect multiplication speeds that

exceed 200 MRs (assuming a pipelined architecture). Such an array

processor is obviously easier to implement than the Acousto-Optic

processors we have presented in Section 4. This further demonstrates

that Acousto-Optic systems cannot compete with existing electronic

technology.

'-72
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8. RESIDUE LOOK-UP TABLE ELECTRO-OPTIC PROCESSING

8.1 Introduction

In this section we discuss a residue arithmetic approach for high-speed

Electro-Optic processing. As we have shown in Section 5, Acousto-Optic

binary processors cannot compete efficiently with existing digital

electronic counterparts. One of the reasons is that Acousto-Optics

performs only part of the operation, i.e., the convolution, and

power-hungry electronics is needed in order to convert the mixed-binary

data of the convolution into a conventional binary form. If operation

in the mixed-binary form would be possible for many processing steps,

then the system efficiency would improve because of the fewer

conversions that would be necessary. Unfortunately, this is not the

case. Thus we have decided to explore other arithmetic schemes which

allow many operations to be performed before conversion into a more

conventional arithmetic is needed. One such possibility is residue

arithmetic.

In the following Section 8.2 we present a brief discussion of the basics

of residue arithmetic. In Section 8.3 we describe a possible look-up

table (LUT) technique for high speed processing and in Section 8.4 we

discuss our prototype LUT. In Sections 8.5 and 8.6, we show how one can

convert from binary-to-residue and from residue-to-binary, via

utilization of LUT techniques. In Section 8.7, we discuss issues

associated with hardware minimization. Finally, in Section 8.8 we

discuss an example of residue LUT processing, a square array processor

for matrix-matrix multiplication.
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8.2 Residue Arithmetic Basics

Residue arithmetic, because of lack of carries, is probably the fastest

way of performing addition, subtraction, multiplication and various

polynomial transformations.19 The residue number system (RNS) is based

upon N fixed relatively prime integers in1 , m2 , ..., mN which are called

moduli (or base). An integer number X, that lies in the range 0 to

(M-i) (M is the product of the N moduli) is uniquely represented with

respect to the N oduli via the Ntuple of residues (Rml, Rm2, ..., ReN)"

Each residue R . is defined to be the least positive integer remainder
m

by the division of X by mi.. For example, for the 5 moduli 7, 9, 11, 13,

16 the maximum range M is equal to

M = 7 x 9 x 11 x 13 x 16 = 144,144 (8.1)

Thus, this set of moduli allows us to represent any integer in the range

0-144,143. For example, 279 is represented by (6,0,4,6,7). Note that

it is convenient to have an even modulo so that we can detect negative

numbers easily. In this case, the range 0-(M/2 - 1) is used to

represent positive numbers, whereas the range M-1 to V/2 is used to

represent negative numbers. Note that in the latter case M must be

* subtracted in order to obtain the correct answer.

19

To perform residue arithmetic operations, we first convert all the

numbers of interest into RNS. We then perform the arithmetic operation

by operating on their RNS representations. The specifics of the iNS

operation depends on the specific arithmetic operation we are

performing. In all cases, however, operations over different moduli are

independent, there are no carries and the result of the operation on

modulo m. cannot exceed m.-1.

1 1
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To add in RNS we simply add the corresponding residues and then we find

the residues with respect to each modulo. For example, in base

(7,9,11,13,15) the sum 279 + 31 = 310 (31 in RNS is (3,4,9,5,15)) is

(6,0,4,6,7)

(3,4,9,5,15)

(2,4,2,11,6) = 310.

To subtract in RNS we change each residue digit of the subtrahend by its

complement and then perform an addition. In RNS the complement of a

residue is its difference from the modulo; e.g., in base 13 the

complement of residue 9 is 4. For example in base (7,9,11,13,16) the

difference 279-31 = 248 in ]NS is

(8,0,4,8,7)

(4,5,2,8,1)

.1*.

(3,5,8,1,8) = 248

To multiply in RNS we multiply the residues at each modulo and then find

the resulting residue. For example, 279 x 31 = 8,649 is

8-8



(6,0,4,8,7)

X

(3,4,9,5,15)

(6,0,3,4,9) = 8,849

Division in RNS is not always possible. RNS by definition represents

integers. The division of two integers is not always an integer and

C. thus it cannot be represented in RNS. However, in some special cases,

.division can be performed by means of multiplicative inverses. An

integer Y is called the multiplicative inverse of X if the product YX

with respect to modulo m is 1. For example, in modulo 11 the

multiplicative inverse of 5 is 9. To use multiplicative inverses for

division, the result of the division must be an integer and the divisor

must not contain any moduli as factors.

8.3 Residue Look-Up Table Processing

Because of the lack of carries, residue arithmetic allows independent

calculations per modulo without the need for different modulo processors

. to cross-communicate. A general RNS processing scenario is shown in

Figure 8.1. In such a general scenario, binary data are fed into a

binary-to-residue converter (B/R). The converter feeds its outputs (N

outputs for N-moduli operation) to N different processors. All

processors perform exactly the same RNS function(s) but with respect to

a different modulo m. Upon completion of the operation, the outputs

from the N processors are fed into a residue-to-binary converter (R/B),

whose output is the result expressed in a conventional binary form.

%~C .6-4....
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Because of this inherent lack of carry propagation, high speed

processing can be achieved. In addition, all processors are similar and

no global interconnections are needed (a very important consideration in

a VLSI configuration). Since the system dynamic range is the moduli

product, high dynamic range is achievable by using more parallel

channels. Thus, high dynamic range can be achieved without reduction of

the processing speed.

Let us now concentrate on the RNS processing itself (B/R and R/B

conversion is discussed in detail in Section 8.5 and 8.6) under the

assumption that residue representations are available. Because of the

lack of carries, the bounded output range, etc., in RNS, various

arithmetic operations may be implemented via the use of the look-up

table (LUT). The idea is illustrated in Figure 8.2 where the LUTs for

multiplication and addition in modulo 5 are shown. For the

multiplication LUT, the objective is to create the product of numbers X

and Y without performing an actual multiplication. For modulo mi, the

LUT has two sets of inputs (one for X and one for Y), each of which

consists of mi inputs (X or Y can take only mi different values). For

different values of the inputs, we obtain a different value at the

output. These outputs are pre-calculated and stored and upon

interrogation of the LUT with the inputs are read out.

Various forms of LUT implementation have been proposed and analyzed in

the literature in the last decade. Among the architectures suggested

are those of Huang et al,20 Tai et al21 and Polky et al, 22 which are

more or less designed around electro-optic control of beams propagating

in integrated optical waveguide structures. Another approach is the one

by Gaylord et al,23 which is based on binary coded residue LUTs. Such a

processor exploits the multiple parallel channel processing capability

that is inherent in optical systems. It performs EXCLUSIVE OR and NAND

logic operations through the use of optical LUTs, which are based on

holographic recordings or the use of spatial light modulators.
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Our approach for implementing residue LUTs is based on the utilization

of small, high-speed light emitting diodes (LEDs) or laser diodes (LDs)

in conjunction with fiber-optic combiners or holograms. Numerical

operations are performed simply by generating a light pulse which

reaches a detector that has been encoded for the number resulting from

each operation. Thus, for the modulo 5 multiplication (Figure 8.2)

light produced at the intersection of inputs 3 and 2 drives the detector

labelled 1. Similarly, for the modulo 5 addition, the light generated

at the intersection of 3 and 2 illuminates a detector encoded 0.

One way for implementing this concept is through an interlaced

two-dimensional grid of electrodes in conjunction with high-speed LEDs

or LDs at the intersection points (Figure 8.3). A voltage pulse applied

to each input line, such that the pulse amplitude is less than the LED

junction voltage but that twice the pulse amplitude exceeds it by a

considerable margin, causes the diode at the intersection point to emit

strongly. The emitted light is transmitted to a detector that is

encoded for the number to be produced at that table location, as

indicated by the number in each grid box. To minimize the number of

detectors required and to promote flexibility in LUT geometry, we use

fibers (or a hologram) to transmit light from each diode that

corresponds to a given digit to the single detector encoded for that

digit.
V.

Other arithmetical operations use the same LUTs in combination with

one-sided subprocessors (or wiring maps) which precondition some of the

inputs to these LUTs. Thus, subtraction proceeds through formation of

the additive inverse of the subtrahend followed by look-up of the

difference in the addition table, while division proceeds via the

multiplication table after first forming the multiplicative inverse of

the divisor. The wiring maps which form these inverses in modulo 5 are

shown in Figure 8.4. Additional operations such as raising to an

8-8
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integral power or an inverse integral power are also performed using

wiring maps which do not require generation and detection of light

pulses. This shows the increased flexibility of the RNS LUTs as

compared with DMAC and BPAM. The inputs and outputs of the LUT remain

in the same residue base and thus different LUTs can be easily

interconnected without the need for conversion. Such capabilities

allow fast data flow and ease of pipelining as we show in Section g.

We now estimate the expected performance of the LUTs. MS figures of

the order of 1 GHs are to be expected since laser diodes have already

achieved sub-nsec switching times24 and operation of LEDs at

frequencies > 1 GHz has also been reported.2 5 To estimate the power

consumption we must consider a specific computation example such as the

'A multiplication of two 8-bit numbers. The possible product range

(6.5 x 10 4) can be covered with the moduli 3, 5, 7, 8, 11 and 13.

Assuming 1 GHz operation, a signal/noise ratio of - 30 (corresponding

to a negligible bit error probability) and the use of detectors with

.NEP of - 1o-13W/49z, we find that the optical power incident on the

detector is about 0.1 #W. Furthermore, assuming - 10 dB fiber coupling

losses and 1% diode conversion efficiency we find that the total

electrical power per operating diode is - 100 #W. If 10% of this power

is used for diode prebiasing then the total prebias power consumption

is about 4.4 mW. Adding to this figure the power required to turn on

the proper diodes (2 x 47 x 100 pW =10 mW) we find that the total
power consumption of the diodes is P 14.4 mW. Next, we calculate the

power consumption necessary to drive a LUT from another LUT, which is

usually accomplished via the use of buffers. This is an important

issue which needs to be investigated in detail but preliminary results

suggest that only one buffer unit per LUT (the one connected to the

'on' detector) need be on at any time. Assuming this to be the case

and that the buffer unit is only 1% efficient, we find that the total

buffer power consumption is 6 x 100 x 100 #W = 60 mW. Thus, the total

~S-li
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power consumption is 75 mW which when associated with a MS of 1 Gbz,

corresponds to a SE of - 1.3 x 1010 M-A/sec. W.

This preliminary analysis suggests that the LUT structures considered

here may offer MS and SE advantages of about an order of magnitude over

those of DUAC, BPAM and GaAs processing units.

8.4 LUT Experimental Results

To demonstrate as well as further understand the LUT concept we have

fabricated a modulo 7 LUT which can be configured either as an adder or

as a multiplier by changing the fiber-optic connections (Figure 8.5).

The laser diodes used, Mitsubishi ML 4402, are capable of providing

5 mW pulses of light output at 780 nm. Their threshold current is

between 35 mA and 40 mA and the operating current is about 50 mA. The

LUT format is a square matrix of 7x7 LDs arranged in 7 rows and 7

columns as shown in Figure 8.6. A double-sided FR4 board is used which

allows the implementation of a 'non-additive' scheme in which rows are

connected with common anodes and columns are connected with common

cathodes. In an alternative scheme the cathodes (anodes) are grounded

and the anodes (cathodes) are connected to both row and column lines.

Note that in this 'additive' scheme we need to decouple row and column

lines (via the use of diodes) in order to avoid spread of the drive

current pulse. For this reason and because of the more complex

interconnection patterns of this scheme, we have decided to use the

'non-additive' scheme.

To ensure high-speed operation we have decided to use ECL compatible

drivers. Current to each anode row is supplied through the 35 Ohm

resistors R1-R which are connected to + 5 V. This row current is

diverted from the laser diodes by transistors Q1-Q7  When the row

inputs to these transistors are at ECL logic 'l ( + 1.2 V) the

"p8-1

.. ,



Figure 8.5 Photograph of prototype modulo 7 LUT
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transistor diverts about 55 mA from each row. Each cathode column is

connected to ground through a transistor, Q8-Ql4, which can sink about

70 mA when an ECL logic Ill is present at the input, and through a

parallel 510 Ohm resistor which provides the path for initial bias

current to the diodes. When all lasers are 'offl, i.e., rows at logic

ll and columns at logic 09, current through row resistors R1-R 7 is

about 67 mA. The remaining row current (: 12 mA) not diverted by Ql-Q 7

Vflows through that row of lasers via the column resistors. This

initial current rises to Z 25 mA when a row transistor is turned off.

It should be noted that the sum of all row currents not diverted by

input transistors Ql-7 and not flowing in the column resistors must be

sunk by column transistors, Q8 -Q14 , when that column is addressed.

The output from the laser diodes is coupled into EFC fiber-optic 7:1

combiners (see Figure 8.5) described previously in Section 7.3. The

combiner output drives a high speed (rise/fall times 1 ns) pin diode

(Motorola MOFD 1100) which in turn drives a high speed comparator

(AM6687). The comparator's dual outputs (positive and negative) are

capable of driving any of the Q1 -Q14 transistors. In this scenario, we

'simulate a LUT that is capable of driving another LUT.

An important factor for high speed operation is the operating mode of

the driver transistors l which need to provide both high switching

speed and adequate current levels. Initially, Motorola 2N5943

transistors were used in a switching mode which offers the advantage of

large current flow. In this operating mode, a drive pulse applied to

the base quickly saturates the transistor and thus adequate current

flow is achieved. The problem associated with this approach is the

slow turn-off times due to the relatively long storage times. Use of

Schottky diodes between base and collector reduces the turn-off times

but not enough to allow GHs-type operation. With this technique we are

able to demonstrate about 110 MHz rates. An alternative approach is to

use the transistors in a current mode which virtually eliminates

" "" S-15



the problem of slow turn-off times. Note, however, that this technique

allows relatively small amounts of current flow and is, thus, suited to

relatively low-current situations. Nevertheless, we have implemented

this technique using Motorola URF 581 transistors which have an Ft of

4 GHs at 100 mA collector current levels. These transistors allow

operating current levels of 45-50 mA and about 2 mA of pre-bias current

which is shared among 7 laser diodes.

Our first experiment deals with the effect of the board's micro-strip

lines on switching speed. For this purpose only two laser diodes are

connected at positions (1,1) and (7,7). These positions are subject to

the smallest and longest propagation delays, respectively. The top

trace of Figure 8.7 shows the 250 MHz RZ ECL waveform used to drive the

laser diodes. This is derived from a Hewlett-Packard (Type 8082A)

pulse generator. The second trace of Figure 8.7 shows the (7,7) laser

diode response to that waveform (detected through an MFOD 1100 pin

diode) when the laser cathode is pulsed and the anode is DC biased.

Similarly, the third trace shows the response when the anode is pulsed

and the cathode is biased. Finally, the fourth trace shows the

response when both anode and cathode are pulsed simultaneously. As

these data show, the laser diode responds to at least 250 MHz RZ or

500 MHz NRZ data rates. (These frequency limits are dictated by the

available pulse generator). Note the reduction in pulse width, by

about a factor of 2, when the anode is partially or fully driven. This

behavior is not well understood and is believed to be associated with

the specific laser diodes used. In any event, this effect is not

believed to seriously affect the LUT's performance. Note that the

(1,1) laser diode shows behavior similar to the (7,7) laser diode with

the exception of the lack of a small delay ( 1 ns). These results

show that both the impedance and inductance of the board's micro-strip

lines allow for at least moderately high switching speeds.
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For the next experiment, the board is completely populated with the 49

laser diodes and different rows and columns excited. Figures 8.8b,

8.8c and 8.8d show the output intensity spots in the absence of the

fiber-optic connections (LUT geometry is shown in Figure 8.8a) when the

(1,1), (4,5) and (7,7) rows and columns are excited. These figures

.' clearly demonstrate the concept of the interlaced electrode LUT and
1. show that only the cross-point laser diodes are in a lasing mode (i.e.,

strong intensity) whereas the remaining laser diodes are more-or-less

in a LED, sub-threshold, mode (i.e., low intensity). Figures 8.9a and

8.9b show the responses of the 7 laser diodes of the first row and the

-. 7 laser diodes of the first column respectively, when driven with a

250 MHs RZ waveform. As these data show, all lasers have a clean

4 response to at least 250 MHz RZ. Note that there is about 20%

variation in the output light level because of the variation in

threshold level and current-power characteristics of the different

laser diodes. In Figures 8.10a and 8.10b we show the responses of the

7 laser diodes of the sixth row and the 7 laser diodes of the sixth

column. Once again we can see that all diodes respond to the drive

waveform of 250 MHz RZ. Note, however, that the response is not as

clean as that of Figure 8.9. Specifically, there is ringing and

undershoot that increases with distance along the strip line. This

problem is not well understood but is believed to be at least partially

due to drive pulse reflections caused by imperfect termination of the

strip line. This is a difficult problem to model and solve because of

the dynamic impedances of the laser diodes involved and is compounded

by the fact that we are dealing with laser diodes of different

characteristics. It is important that this issue be further studied in

detail to provide a solution which will eliminate the possibility of

false responses by ringing.

- Finally, we have measured the 'noise' due to the response of the laser

diodes which are connected to the rows and columns being exercised, but

which are not located at the cross-points. This is an important

• " 8-18
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measurement because it provides information concerning the detector

threshold level necessary in order to avoid false responses.
Figure 8.11 shows the responses of the 7 laser diodes of column 4 when

the (4,3) laer diode is being exercised. As Figure 8.11 suggests the

response is rather small, about 20 db below the response of the (4,3)

laser diode, which translates to rather non-critical thresholds.

Similar results are obtained when different rows and columns are

excited and, thus, this is not a serious problem.

In conclusion, we have shown that a LUT constructed with discrete

components can operate to at least 250 MHz RZ or 500 MHz NRZ data

rates. We expect substantially higher rates from a hybrid or

monolithic package. However, we should emphasize that a complete

analysis of the driving circuit is necessary to enable properly

terminated lines to be designed that will eliminate the

ringing/undershoot problems.

8.5 Binary-to-Residue Conversion (B/R)

A simple way to understand B/R conversion is through a simple numerical

example. Consider the binary representation of the number 255:

|* ' 7 8 20
255 = 1 (2) + 1 (2) + ... + 1(2) = 11111111 (binary)

Because of the presentation of algebraic rules in RNS (i.e.,

<r+s> = <r> + <s> and <rs> = <r><s>, where <r> is the residue
representation of number r), the residue representation of 255 is equal

to the residue representation of the sum of the products of the binary

bits and the powers of 2 they correspond to. For example, the residue

of 255 modulo 7 is

8-22
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<255> 7 =<12 >74(12>7 <120 >7

* .'"and the total prebias power

= <2 + 1 +4 + 2 + 1 + 4 + 2 + 1>7

= <17>7 = 3 (8.2)

From Equation (8.2) we see that for an efficient B/R conversion, we

need to: (1) multiply each input bit by the residue representation of

its corresponding power of 2 and (2) sum all the residues.

Fortunately, all these operations can be achieved in a pipelined

architecture using the LUT technology of the previous section. An

example of such an implementation is shown in Figure 8.12 for an 8-bit

A/D converter and modulo 7. Each output bit of the A/D converter is

connected to a binary switch. Pairs of binary switches are connected

to 2x2 LUTs. Pairs of 2x2 LUTs are connected to 4x4 LUTs which in turn

ae connected to 7x7 LUTs. Each 2x2 LUT provides the residue of the

sum of two bits. depending on whether each bit is I or "0", the

binay switch activates one of the two possible electrodes (each bit

can be 0 or Y in residue, Y being dependent on the power of 2 each bit

corresponds to and the modulo we use). Once two inputs are present in

the 2x2 LUT, one output (out of four possible outputs) is produced.
7 676For example, for the case of bits 2 and 2 , if we have 1:27 and 1:26

the LUT output is 3. Two such outputs now drive 4x4 LUTs whose outputs

drive the 7x7 LUT. Note that this is a pipelined process and thus at

each clock cycle a new residue is produced.

For most practical residue processors, moduli that exceed 11 are

required. In these cases 2x2 and 4x4 LUTs are always used. The

dimensions kxk of the third LUT depend on the modulo k we use. For

example, for modulo 13 we need a 13x13 LUT. The number of 2x2, 4x4 and

kxk LUTs we need depends on the number of input binary bits. Table 8.1

shows the number of 2x2, 4x4 and 7x7 LUTs we need for 8, 16 and 32

input bits when modulo 7 is used.

8-24

04



7. 6.. 5

.44

MSB 8-BIT A/D

-'2 7  2 25  24  2 22  21 2

i BINARY SWITCHES2)

2x2 (+ LUTs 3 2 5

(m i INDEP.)
',..

0 1---- 4 --

. 2. 34 A !2! 1 2
4x4 (+) LUTs

(m i INDEP.) 1314 0 1

I0 2341516--"

7X7 (+) LUTS 1 2 34 5 6 0

(m 1 IAC DEP.)5 6 0 1" ~ 3m.A DP)4 51 '6 0 1 231-"-

4 56 0 1 2 -
,.: . 5 6!0 1 2 3 4 , - -
;'6- 60! 1 2 3 4 5

I.. RESIDUE OUTPUTS 0 I 2 34 5 6

5 Figure 8.12 B/R Conversion via Pipelined LUTs

.,8-2

~8-35



Table 8.1

N (bits) 2x2 44 7x7

8 4 2 1

18 8 4 3

32 16 8 7

From the above we can conclude that B/R conversion can be achieved in a

very simple way by means of LUT technology. The process can be of high

speed because a pipelined architecture can be used.

8.6 Residue-to-Binary Conversion (R/B)

Residue-to-binary conversion can be achieved by converting into the

mixed radix system19 which allows for the use of LUTs.

o-The principles of operation are pictured in Figure 8.13 for a system of

four moduli, m1 through m4 , with residues r1 through r4. The four

residues are clocked in simultaneously with r2 , r3 and r4 going to LUT

accumulators and r1 being fed through an additive inverter (for

complement calculation) to each LUT accumulator; r1 also passes through

the system as output a1.

The subtractions are performed to the respective moduli and the results

are passed to the LUTs. There they are modulo multiplied by r1 and

passed on to the next stage. The second stage performs similarly to

the first except that now a2 is subtracted from the others and is

passed to the output. The process continues through a cascade until

the final output is triggered, in this case by the arrival of a4 . The
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result of the decoding process must then be calculated according to the

. expression

I = a1 + a2"31 + a3ml32 + a4*313233 + ... (8.3)

where I denotes that the result is an integer and the sequence

continues for as many terms as there are residues.

An example of this procedure is shown in Figure 8.14. In this example

we use 4 moduli 2,5,7 and 9. The input residue representation is

(1,3,4,0) which corresponds to 333. Rectangular blocks show the LUTs

and small squares the output detectors. The values within the detector

blocks correspond to the results of the wiring maps, for the additive

inverters (-r.)m., when applied to the original input values (shown

next to the arrows). One can understand the operation by tracing the

heavily outlined squares in each block. In the bottom of Figure 8.14

we show the conversion result which is 333.

Tai et al.21 have suggested a pipelined version of the R/B convecter.

In their approach the coefficients al, a2 l, a3, etc., are delayed so

that they all appear at the same time. Figure 8.15 shows the pipelined

version of the R/B converter of Figure 8.14. Note that delays are

implemented using technology similar to that used in LUTs; i.e., sets

of laser diodes, fibers and detectors. Through this pipelining

structure, we can have multiple sets of residues following each other

through the R/B converter with a time-gap of only one cycle and thus

high speed conversions are possible. Note that the total number of

LUTs is 2N-2 where N is the number of moduli we use.

Let us consider now a practical implementation of Equation 8.3,
assuming that a pipelined R/B decoder is available. The first

operation we need to do is to multiply each coefficient ai by the
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proper mi,m .. m w product (mimj-,.mw products are known a priori).This

operation can be accomplished via high speed digital ROM LUTs (see

Figure 8.16), which are activated depending on which value of the a.

coefficients is won.' Next, we fan-in all outputs of each a. ROM LUT

and add them in pairs via a high-speed digital adder. Subsequently, we
.1 sum the results from the adders to obtain the final output I. In

Figure 8.16 we present an example of this operation for the R/B

converter of Figure 8.15. It is important to note that the approach of

Figure 8.16 is fully pipelined which means high speed conversion

capability. Note that the total number of ROM LUTs we need is equal to

a'. the sum of the N moduli we use, whereas the total number of high-speed

adders is equal to N-1.

From the above we see that R/B conversion can be achieved in a very

simple pipelined way with efficient utilization of LUT technology.

8.7 Hardware Minimization

One of the issues associated with position-coded LUTs is their

complexity in terms of numbers of gates (optical sources in our cases).

This is because the number of gates N grows as the square of the

modulo m. To understand this, consider a particular residue example,

specifically, a residue equivalent of an 8-bit multiplication, which

requires moduli 3,5,7,11 and 13. In this case, we need a total of 437

gates or laser diodes. For computationally linear signal processing

problems this is more-or-less acceptable but for computationally

non-linear applications it becomes a serious limitation. For example,

consider the dynamic range needed in order to solve a system of linear

equations of dimension 12. Assuming that the maximum value of the

determinant is 128, we find (see Section 9.2, Equation 9.5) that the
" 131

dynamic range needed is of the order of 5 x 10 (about 105 binary

bits)! To accomplish this, we need the moduli 9,11,13,17,19,23,25,

29,31,37,41,43,47,49,53,59,81,84,67,71,73. In this case just one

residue multiplier requires a total of 42,452 laser diodes.
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Obviously, for this kind of problem the complexity grows rapidly. In

an effort to minimize this problem, we have sought solutions at both

tne LUT and processor levels. In the first part of this section, we

discuss our attempt to minimize the number of laser diodes per LUT and

in the second part we discuss a general residue scaling approach

suggested by J. N. Polky et al.
22

One can accept that the LUT gates can be reduced once it is realized

that there exist symmetry planes in both multiplier and adder LUTs.

Consider, for example, the LUTs of Figure 8.3. In the multiplier LUT

one can see that the symmetry line passes from (0,0) to (6,6)

coordinates. Similarly, the adder LUT is symmetric about the line from

(0,6) and (6,0). Thus, if we route some of the inputs properly, about

one-half of the diodes will be needed. One such example of a reduced

LUT is shown in Figure 8.17 for the case of a modulo 7 multiplier LUT.

It can be seen that we need 28 diodes versus 49 for the general

implementation. This is achieved via proper interconnection of similar

output channels. In the process, however, we are forced to use

multiple-drivers per grid, whereas for the non-reduced case we need

only single drivers. In addition, we have increased the average number

of interconnections (per diode) by a factor of 2. Thus, we see that

the reduction of gates is accompanied by an increased complexity in the

*interconnect pattern. In fact, one can easily show that as the number

of diodes decreases, the number of interconnections per diode

increases. This relationship is shown in Figure 8.18 where we plot the

number of laser diode rows (NR) versus the number of interconnections

per diode (n) for modulo mc. From this plot we can see that, in

principle, a LUT made out of 1 row of gates (total of mc diodes) is

possible; however, each diode needs at least 2 mc interconnections.

Thus, we need to optimize the relative numbers of diodes and

interconnections; one method of accomplishing this is to assign cost

functions to both diodes and interconnections. For our experimental

LUT boards a simple analysis shows that the multiple drivers and the

8-33



0Q 1~7 5_~
0 0 0 0 0 0 0 0

1 0 1 2 3. 4 5 6

' -- - -'

0 a 5
j!- --

42 5 2

4".

2 0 2 _ 1 6 P 26 52 1

0 
3 2 3 4 5 4

4REDUCED 

IMPLEMENTATION

2" 
-.e--LASER DIODE OR LED

0 3 

...- POSITIVE 
DRIVE PULSE

l 5 0 6

-- t - -. 

-. ,--NEGATIVE DRIVE PULSE
.d-' 

1 

j J -L-M ULT IPLE FIBER -OPTIC

•4 Ir I
-- - CONCTO

0 6 3 4 321W - E C O

2 0 3 6 2L u- *- - O ST I VL E D R IV ER P L S

VZ]

,,,'.Figure 8.17 Examples of Reduced Size LUT via the use of symmetry~8-34

S



Curve 752092-A

"R

5-

4-

3-

2-
ft.

,2 4 6 0 1

*Figure 8.18 Number of Laser Diode Rows (NR versus Number of
Interconnections per Diode (ni) for Modulo a

8-35

ftp

ft -'t ft-t



more complicated interconnection pattern result in a more expensive and

more complicated LUT and, thus, the unreduced LUTs are preferable.

Note, however, that this analysis is performed for a discrete component

LUT where the physical length of the electrode microstrip lines is of

the order of 10 cm. In a realistic scenario where LUTs are made out of

integrated LED or LD arrays and the microstrip lengths are considerably

smaller (- 1 cm), a similar analysis may yield different results. In

any event our present feeling is that a reduction by a factor of 2 is

about the limit of this approach. The result of such a reduction is

obviously not very significant and, thus, we need to develop LUT
2architectures in which N grows at a slower rate than mg

Hardware reduction can also be accomplished at the processor level by

using techniques which include efficient algorithm selection (to keep

the low dynamic range) and scaling. The choice of algorithm is

application dependent. For the APAR case the only present alternatives

are Gram-Schmidt type algorithms and possibly Gauss elimination

techniques since these do nit require divisions or square roots (which

are problematic for RNS). Scaling is possibly a more profitable

approach since it can be applied to a number of applications. The

scaling technique we have studied is that suggested by J. N. Polky
t a122 which offers the advantages of: (1) scaling for both positive

and negative numbers and (2) pipelining. In this scaling technique22

we first prescale by adding M/2, next scale by performing about N+1

additions per module, and then post scale by subtracting various

biases. The technique requires that an extra module is used. For the

prescaling, one wiring map per module is required and its output is

fanned out to N+1 channels. For the scaling operation, each module

requires N maps whose results need to be added and, thus, N-1 adder

LUTs (per module) are needed together with one more adder LUT for a

combined 3caling/post-scaling calculation. Thus, the total number of

LUTs needed is N2 + N. It is of interest to examine the accuracy and

range of this scaling procedure so that the "savingsw (from the

I
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scaling) and 'expenses' (due to N2 + N LUTs) can be compared. To

achieve this we use a computer program which calculates (in residue)

the scaling results for a variety of scale factors S and residue

dynamic ranges M. In Tables 8.2, 8.3 and 8.4, we show the worst-case

scaling accuracy (SA) and the expected accuracy (EA, obtained by

performing a straightforward division of the number to be scaled by S)

for different residue ranges M (V = 27, 24 and 20 binary bits

respectively) and scaling factors S. For each case, 512-65,000 numbers

are scaled (S = 0.5% - 0.0001% of i) and the lowest SA is reported.

From the above tables we see that SA varies as a function of both M and

S, with the latter being the most critical. This implies that for a

given scaling accuracy, the scaling factor cannot exceed a given

percentage of M. For example, for I = 24 (Table 8.3) if a SA of 9 bits

is required, then S cannot exceed 0.05% of M.

* From Tables 8.2-8.4 we see that if a SA of 9-10 bits is desired, the

maximum scaling factor S cannot exceed 0.005% M. This implies that, in

principle, with M values of about 20,000 we can handle much larger

dynamic range problems. This issue needs to be studied further in

conjunction with a specific algorithm. Only in such a context can we

evaluate whether the benefits of scaling are significant.

Unfortunately, the Gram-Schmidt algorithm of Section 9 cannot

incorporate this scaling technique.

8.8 System Chara.zteristics for a Square Systolic Residue System

In this section we discuss an example of a residue LUT processor,
isnamely, a systolic processor for matrix-matrix multiplication. This

particular example is chosen because a large number of APAR algorithms

can be expressed in terms of matrix-matrix multiplication. Figure 8.19

shows a typical configuration for a square systolic array. The array

consists of naxn MAU LUTs, each of which consists of cascaded multiplier
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Table 8.2

S % m EA (Bits) SA (Bits)

200,000 0.5 9 7

100,000 0.1 10 7

50,000 0.05 11 9

25,000 0.01 12 9

12,500 0.005 13 9

S8,250 0.001 14 12

3,125 0.0005 15 12

1,562 0.0001 16 13

Table 8.3

S % m EA (Bits) SA (Bits)

41,500 0.5 9 7

20,750 0.1 10 8

10,370 0.05 11 9

51190 0.01 12 9

2,600 0.005 13 10

1,300 0.001 14 10

650 0,0005 15 11

320 0.0001 18 13
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Table 8.4

S % m EA (Bits) SA (Bits)

1800 0.5 9 7

900 0.1 10 8

450 0.05 11 9

230 0.01 12 9

110 0.005 13 11

80 0.001 14 12

30 0.0005 15 13

10 0.0001 16 13
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and adder LUTs. To insure proper data propagation, local interconnects

between adjacent MAU LUTs involve a fixed delay which is equal to the

delay of a LUT. For the purposes of this example, we assume a 16x16

real matrix multiplication scenario in which the elements of the input

matrices cannot exceed 8 bits. Each MAU is required to add 16 products

each consisting of 16 bits. Thus, the dynamic range requirealent is

20 bits or 1,048,576. To handle this we use the moduli 7,8,9,11,13 and

17 which yield an M of 1,225,224. Note that in this example the

dynamic range of the multiplier can be handled by moduli 7,8,9,11 and

13; however, we forced to use the extra modulo 17 because of the

dynamic range requirement of the adder. For the systolic processor we

need 2 x 16 x 16 = 512 LUTs per modulo layer giving a total number of

512 x 6 = 3,072 LUTs. The total number of LDs in these LUTs is about

396,000. Additional LUTs are required for B/R and R/B conversion. We

need a total of 6 x 16 x 2 = 192 B/R converters each consisting of

7 LUTs. The average number of LDs per B/R is about 170 and, thus, the

total number of LDs in the B/R converters is about 32,000 (i.e., about

8% of the number if the processor). The number of R/B converters is

determined by the read-out arrangement. Let us assume the use of 16

R/Bs in order to read out the results in a pipelined fashion. Each R/B

needs 15 LUTs which contain about 2,700 LDs and thus the total number

of LDs for the R/Bs is about 43,000 (i.e., about 11% of the number in

the processor). Thus, we see that the total number of LDs is about

470,000. By comparison, a fully digital 18 x 18 array processor

requires a total of 256 MAUs. Each MAU requires about 76 Full Adders

each of which requires about 10 gates. Thus, the total number of gates

is 190,000 which is about 40% of the complexity (in terms of gates) of

the residue system. Thus, we conclude that, for this particular square

systolic processor, the residue LUT implementation has twice the

complexity of an electronic digital implementation. However, this

situation can change if the complexity of the LUT is reduced. We also

note that the specific application which we have analyzed does not

favor the residue system. This is because the multiplier LUTs have an

8
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increased compley'.y dictated by the dynamic range of adder LUTs which

requires the additional modulo 17 LUTs. Without these LUTs the number

.* of gates in the processor is reduced to about 270,000, comparable to

that of a fully electronic processor. This emphasizes the necessity of

choosing applications which are well suited to residue implementation.

The MS of the system is equal to that of the LUTs which we expect to be

in the range 1-8 GHz. To calculate the SE of the processor we perform

an analysis similar to the one in Section 8.2. Thus, assuming 1 GHz

operation and LUTs implemented with laser diodes, a SE of the order of

2-3 x 10 M-A/sec. W can be expected. These values of MS and SE for

the residue processor are superior by at least an order of magnitude to

those of a GaAs implemented electronic processor.

The performance of the residue processor may be improved considerably

if different Electro-Optic technology, for example SEED (Self-Electro-

Optic-Effect) devices, is developed for LUT implementation. These

devices exhibit strong changes in optical absorption (transmission)

dependent on the intensity of the incident light. These changes are

due to changes in internal electric field distribution that occur in

response to a variation in carrier concentration induced by optical

absorption. The response time of this process is estimated26 to be as

short as 2 x 1013 sec. If this technology can be implemented in LUTs

then improvements in MS and SE by 2 orders of magnitude can be

expected. In this case, the performance of the residue processor would

be far superior to that attainable from electronic processors,

including GaAs.

8-42
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9. RESIDUE LUT IMPLEMENTATION OF GRAM-SCHMIDT APPROACH

FOR THE SOLUTION OF LINEAR SYSTEMS

9.1 Introduction

In the previous chapter, we showed how residue LUT techniques can be

used to perform simple arithmetic operations. In this chapter we

discuss the residue LUT implementation of a variant of the

Gram-Schmidt1 approach for the solution of systems of linear equations.

As such this technique is directly applicable to the APAR problem. In

the next Section 9.2, we discuss the problem of solving systems of

linear equations using residue arithmetic. In Section 9.3 we present

the basics of the Gram-Schmidt variant along with a numerical example.

Section 9.4 contains the LUT design for the residue implementation of

the technique. Finally, in Section 9.5, we discuss the characteristics

of the LUT processor.

9.2 Residue Resolutions of Linear Systems

A significant advantage of RNS involves its considerably greater

flexibility than DMAC or BPAM. Addition, subtraction, multiplication

and some forms of division can be performed in easily-implemented LUTs,

*and this allows the efficient implementation of rather complicated

signal processing algorithms, such as the Gram-Schmidt
1

orthogonalisation approach, in solution of large linear systems of

equations.

These considerations strongly recommend the exploitation of RNS in the

APAR application, which in certain formulations requires solutions of

systems of the form

9-1



where C. is the covariance matrix, w is the adaptive weight vector,

and s is the steering vector. Adoption of RNS to solve Eq. (9.1)

precludes consideration of the QR and certain other often-used

algorithms which are inherently tied to real, as opposed to integer,

calculations. This is not the case, however, with the modified version

of the Gram-Schmidt orthogonalization, as we shall illustrate in detail

in later sections. Before we address these particular algorithms, it

is appropriate to look more generally at the use of residue arithmetic

in solving sets of linear equations.

To begin with, we assume that the elements of Cv and s are allv -v

integers; solutions in RNS can also be computed for the more general

case where data are given as Gaussian integers, but we avoid this

formulation for simplicity. Because of the manner in which the

covariance matrix is derived from noisy signals, it is relatively safe

to assume that Cv is non-singular. With Cadj representing the adjointv v
of C, we know that

S ad (9.2)
v v

is the integer solution of

C4 = (detC v (9.3)
Thus, we can write

y y /detCv  (9.4)

which shows that division can be postponed until the last step of

computation. Newman27 has proved that Eq. (9.3) can be solved using

residue arithmetic and we highlight some important steps of his proof

here. Let Z be the ring of all integers and, for a given integer k > 0,

S9-2
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let Zk represent all integer multiples of k. Basically, use is made of

the ring Z1 of integers modulo 9; it is the ring of residue classes of

the form r + Z M = : <r>M. Then M = {<O>M, <I>, ... , <M-I>M} and the

well-defined rules <r>MT<s>M = <rTs>M with T = + or x, make M a

commutative ring. These rules justify computations involving finite

sums and products; for example, if B is a square matrix, then

<detB>M = det<B> . In solving linear systems of algebraic equations,

Newman has shown that the pri~icipal modulus M must bound certain

parameters involving the determinant of C v and the second member s .

Using Hadamard's inequality and Cramer's rule we have derived the

following slightly improved inequality for a bound on M:

M > 2nn/ 2Knlmax {k,b} (g.5)

where K = max.ij.c v I and b = max Is .vI. In the following section

examples are presented which show that this bound is conservatively

large, although improving it is difficult.

9.3 Gram-Schmidt Variant

The Gram-Schmidt approach is applicable to the APAR problem because it

allows operations involving rectangular data matrices A, where

C v = A *A. Here, we write

A*Aw =s (9.6)./ . -v -v

which we solve for w . This is done by post-multiplying A by a

sequence of n x n matrices to produce a new sequence of m x n matrices

where e'ach aucceeding matrix in the latter sequence has its number of

orthogonal columns increased by 1. With E1 representing the n x n

identity matrix,

iN N



AE = Q1" (9.7)

If E2 orthogonalizes the second column of AE1 to its first, then

AE 1E2 =2 (9.8)

has two orthogonal columns. This sequence continues until we have

E = E.. En and Q = Q,' ... Q, where E is upper triangular because all of

its constituents are used and Q has orthogonal columns, and,
% consequently, Q*Q (Q is the Hermitian conjugate of Q) is a diagonal

matrix we call A. This procedure differs slightly from the usual

*Gram-Schmidt method in that we use orthogonalization without

normalizing the vectors in order to obviate the excessive growth of

integers in the computation as well as to postpone division until the

last step and remove the necessity to extract roots. The matrix Ek+1

differs, at most, from the identity by possessing integers in the upper

half of its (k+l)st column. In summary, we now have

AB = Q (9.9)

and multiplying this equation on the left by its Hermitian conjugate

gives

"*A*A = Q*Q = A , (9.10)

:i'2,',~ FA= E*- AB-  g Z

and

w = EA- 1*E-v (9.12)
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To perform this computation in residue arithmetic we must also evaluate

the determinant of C. in each modulus. From Eq. (9.11) we see that this

number is given by

detCv = detA/IdetEl 
2  (9.13)

where only the products of diagonal elements in E and, of course in A

need be computed. These computations are illustrated with an example.

Before proceeding with this example, we should note that the growth of

integers in this algorithm can be enormous but that it is not the

individual collection of integers appearing in the intermediate steps

of the computation that must be bounded by the principal modulus --

instead, we postulate that it is the bound on the coefficients in the

expansions of various terms that matters.

Consider now a 4x3 system corresponding to Eq. (9.1) and given by

1 01 1 1 10 x[1
1 1 0 2 0 1 j1 = (9.14)
0. 01 10 10 1 s -1

A A w = s

twith w = [x,y,s] t . As we described above, the columns of A are
orthogonalised through application of the matrix

3- 0 1 0 (g.15)

0 0 3
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to produce

1 0 -1
0 1 3

1 I-1 2 (9.16 )
1 1 -1

and

-" 3

1= 3 (9.17)

Using Eq. (9.13) we find that

detCv = 15 (9.18)

4' and to insure that an integer solution exists, we multiply s

(1,1,-i) by 15 and solve for w'v = (x',y',s)t. The inverse of Cv is

S11 -4 -3

C1  A - 1E" - 5 5 ] (9.19)
-3.. 0 9

'.,

so that we get

S15 9
y =-1 15 0 (9.20)

-15 -12
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t-1which by Eq. (9.4) yields w = (3/5, 0, -4/5) . Note that C-I is-v
symmetri6 which is expected because C v, the covariance matrix, is

symmetric.

Let us now course through the same examples using residue arithmetic.

From Eq. (9.5) we find that V should be 2 2808, which can be satisfied

with moduli of 5, 7, 8 and 11; in this particular example, using 2 or 3

as a modulus would cause <E> to be singular, a circumstance which cannot

be tolerated. We have noted previously that in some cases smaller V

values are sufficient for providing the correct answer, but this is not

always true and one thus has to select an M at least equal to the upper

bound. To demonstrate that smaller principal moduli can suffice we

choose to solve our 4 x 3 example using only the two moduli 7 and 11.

In modulo 7 we get

<E>7 H 1 o (9.21)

#108

'"0 0 3

1. 0 6

<Q> 0 (9.22)

.. T / >7 3 (9.23)

.-



and

d-1I>7 5 (9.24)

Thus, we find that

i 4 2 4

<C >7 <>7<A >7<B >7 2 5 0 (9.25)
4 0 2

and

1 2

<Y>7 = <CV->7 1 0 (9.26)
a 2

For modulo 11 we obtain

0 07 2 4

< > 7 4 0 4 ( (9.27)
2 05 7 10

We can decode the results of Eqs. (9.26) and (9.27) to obtain

I
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.1*1

x = (<1>7 ' <9>11) = <9>77 = 9

1 = (<2>7'<10>11) = <0>77 = 0 (9.28)

-l = (<2>7,<10>11) = <65>77 = -12

h." Mwhere the last vector components involve the representation -38,-37,

...,-1,0,1,2,...,38 as the elements of Z77 . Comparison of Eq. (9.28)

and (9.20) shows that the RNS approach indeed provides the correct

number.

Caution must be employed because certain moduli can yield singular

equations or degenerate inner products as a result of the fact that, in

a quotient ring Z <x x> = 0 for a non-zero vector x. This computation

has the disadvantage over the straightforward Gram-Schmidt

orthonormalization and Q-R algorithms in that it generates integer

growth in the computation at an alarming rate.

9.4 LUT Implementation of Gram-Schmidt Approach

The implementation of the modified Gram-Schmidt procedure described in

this section is based solely on the use of residue LUTs and delays. Our

objective is to invert matrix A in order to solve a linear system of the

form Ax = b, by expressing

AB Q (9.29)

A where E is a triangular matrix and Q has orthogonal columns. Once E and

Q are known, we proceed to calculate

Q* Q=A (9.30)

-9-
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and

!: "'i1 - A-IQ*.
P = Q A (9.31)

We are now ready to invert A by calculating

C = A - 1 = EQ- 1. (9.32)

The first part of the implementation deals with the calculation of the

column vectors of Q, which we note by wj, and the coefficients aiPj7k,

.i = 1,2, j = i+l, k = j+l, ..., which represent the columns (in

' order) of the matrices E.. A simple analysis shows that each of the w

.4 can be expressed as

'- = *1 + #212 + 3 + .. i-i- + Aii (9.33)

th thwhere #k is the k element of the i column of the E. matrix and u. is'.,.'-[1 -I

the ith column of A. To calculate the w., we need to know the

coefficients #i, i = 1,2,3. ..... , i-1, as well as all _1,w2  " 1

This implies that the vector/coefficient calculation is serial and

.. alternates, i.e., we first calculate w= Ul then we calculate al, a2

followed by -2 then pA01P3, etc. The parametric form of the #i

coefficients can be written as

= <Wl-1> / <wli>
ill l~i(9.34)

'#2 = -'1 <-2 Ul> I <-2-2>

.5.' 9-10



where < > designates the vector dot product and the superscript bar

(vinculum) means complement. Eqs. (9.34) reveal that, with the

I" exception of is and #i, the coefficients "k have a rather regular form

which is a function of pip (<w kk>)-l and <wkui>. We thus need a LUT

set (LUTS) that is driven by Wk and produces an output that is

-: proportional to (<wkwk>)-l (LUTS1), and a LUTS that is driven by sji ,

4 and (Lk!k>)- and gives two outputs, one that is proportional to lk
and the other proportional to /kk (LUTS2). Similar LUTS are needed

for the calculation of <wiwi> and Pi (LUTS3 and LUTS4). Figures 9.1

and 9.2 show typical examples of LUTS1 and LUTS2. In these figures

each LUT has 2 inputs and 1 output. The top part of the LUT shows the

operation performed (multiplication (*) or addition (+)) with respect

to modulo m. The middle part of the LUT shows the implementation by

wire maps of functions such as dot product complement (< >) and inverse

(1/< >); when the middle part is blank, no operation is performed

there. The lower part symbolizes the output detectors. In the LUTS of

Figures 9.1 and 9.2, one can also see blocks that denote delay(s)

(denoted by D), which are necessary for data synchronization. To

simplify, we designate the equivalent block diagrams of the various

LUTS structures and delays with the blocks of Figure 9.3, where the

number on the top right corner shows the total delay (in clock cycles)

that the LUTS needs in order to provide the lower output, a useful
quantity for calculations of delays needed for data synchronization.

With the aid of Figure 9.4, we now describe a pipelined processor that

calculates wi and /i for a 6x6 example. It can be seen that the

'' processor uses LUTS1 through LUTS4 plus delays and adder LUTs. The

inputs of the system are the elements of the matrix A. We assume that

all the elements of A are fed into the system in parallel. This is not

a necessary condition and is adopted mostly for simplicity. The

elements of A are fed through 6 row lines (i.e., a total of 36 lines)

which are located at the top left of Figure 9.4. The top row of the

system consists of one LUTS4 and 5 LUTS3. The former provides <w1 21 >

~9-11
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which is needed for the calculation of the a2 through e6 coefficients.

Its output is fed in parallel to the 5 LUTS3 which calculate the above

coefficients and the products of the coefficients with the proper u. 's.

The latter are needed for the calculation of the various w. [see

Eq. (9.33)]. For our BxB example, it takes 7 cycles for the

calculation of w2 (the 7th cycle being needed for the addition of a2u2

and_ 1 =u 1 =l) and 5 cycles for the calculation of a2-CS

coefficients. The w2 output is connected to a LUTS1 unit while the

other outputs (delayed by one clock cycle) are fed into 4 LUTS2 which

after 7 cycles calculate 33 and the coefficients 72-e2 . Note that we

now need LUT adders in order to add the t3H3 to P2w2 , the 7 to 72e2,

and so on. This process continues for 4 more rows until all w. and all

the coefficients of the E. matrices are calculated. It is important to
i

note that the processor of Figure 9.4 operates in a pipelined fashion

and thus constantly updates the vectors and the coefficients a-e.

This is very important for the APAR scenarios where one wants to

constantly update the adaptive weights. Finally, we note that the

processor provides output data (vectors and coefficients) every 7 clock

cycles (see Figure 9.4).

We now proceed to describe another pipelined processor (Figure 9.5)

%. % which is used in order to calculate the elements of the E matrix which

in turn are necessary for calculating Eq. (9.32). For our xS example

one can easily show that the elements of the triangonal B matrix are

given by

.o
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The form of the elements shows that in calculating the e.. element we

need to know all the e.j - elements as well as all the pi

coefficients. This implies that another serial-type operation is

necessary. This is exactly what the processor of Figure 9.5 performs;

... the e.. element is calculated only after the previous ei,

m=1,2,...,j-1, elements have been calculated. Note that in order to

avoid unnecessary complexity we have to rearrange the order in which we

receive some of the coefficients from the previous processor.

Specifically, we have to delay the first set of coefficients by an
amount such that we receive all a2-e2 at the same clock cycle, all

P3-"3 at the same clock cycle, etc.; thus, we need to delay a2 by one
clock cycle, P3 by two clock cycles, etc. Once this is done,

coefficients with the same subscript will arrive in parallel (see top

.'a

-. -1



of Figure 9.5). It is important to remember that each set of

coefficients arrives 7 cycles after the previous set, because this

explains the choice of the delays we use. The operations necessary for

calculating Eqs. (9.35) can be achieved via the use of multiplier and

adder LUTs as well as delays. The P2-C2 data are fed in parallel into

4.. 4 multiplier LUTs which form the products with a1. The outputs are

then fed into 4 adder LUTs which form the sums with the Pl-el data.

Note that although all coefficients with subscript 1 are equal to 1, we

treat them as unknowns in order to generalize the design of the

processor. Since data P2-C2 are 7 cycles behind the P1-e1 data, we

need to delay the latter by 8 cycles in order to have them available

for the addition. The result under the P2 line (equal to e13, see

Eq. (9.35)), is needed for the calculation of the. products with the

next set of data, which will arrive a total of 5 cycles later. This

result (e13) is delayed by 8 cycles and then fed to 3 multipliers which

are also driven by data 73 -'3. These results are then added to the

results under lines 72-C2 and the e14 element is computed. This

pipelined process continues until all eli elements are computed. Note

that in parallel to the eli calculation, we also perform the e 2i-e8 i

calculation (the eji element does not depend on the ej_l,i element).

This is accomplished by driving sets of units similar to the ones we

used for the calculation of the eli elements. Due to the triangular

. form of the matrix E, the number of units necessary for the calculation

of elements e j-l i is reduced by one as compared with the number of

units needed for elements eji. Due to the pipelining process, the

parallel operations and the natural delays of the coefficients, the

E matrix elements are computed so that elements with the same second

subscript are produced in parallel (see Figure 9.5) and 7 cycles after

the previous set. Thus, once again we have achieved the pipelining

which is important for high speed processing.

For the evaluation of Eq. (9.32), we also need to calculate the

P matrix. One can easily prove that each pi row vector is given by
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= wl '(9.36)
.. 1

where

X= 1/<w. w.>- (9.37)

Eq. (9.37) has already been calculated in the processor of Figure 9.4

because it is needed for the calculation of the a, ...... ,

coefficients. Since wi appear 4 cycles ahead of -1. we need to delay
A-1

them by 4 cycles and subsequently multiply them by X. This is shown1

in Figure 9.8 for all 8 row vectors of the P matrix. We are thus

capable of producing all of the elements of a row vector of the

P matrix every 7 clock cycles.

This final step in calculating Eq. (9.32) involves a matrix-matrix

multiplication; i.e., EP. To achieve this we can use the array

processor of Figure 9.7. This system consists of 36 similar units

arranged in a square format. Each unit consists of a multiplier and an

adder LUT as well as a delay. The LUTs are arranged so that each

product is added to the previous one (i.e., we form a

multiplier/accumulator). Each set of column units is driven in

parallel by the appropriate E data, and each set of row units is driven

in parallel by the appropriate P data. Upon summation of 6 products,

the adders are read out, and each output is an element of the C matrix.

Note that the sequential format required for both E and P data is the

same as the sequential format of the data that leave the processors of

Figure 9.5 and 9.8. We must multiplex the data, however, because the E

and P data come from 21 and 38 output lines, respectively (see

Figures 9.5 and 9.6), whereas there are only 8 input lines (per side)

for the processor of Figure 9.7. This is not difficult since

successive rows (columns) of the E(P) data appear every 7 cycles.

Furthermore, by use of appropriate delays, we can provide the
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successive data at one cycle intervals (instead of 7) and allow the

array processor to maintain the pipelining f or at least 7 cycles, which

means that a new matrix can be read out every 7 cycles.

, 9.5 Processor Characteristics

Let us now discuss the system delay T8 , which is defined as the time

required to provide the matrix C after loading matrix A. From

Figure 9.4 we see that the calculation of the e coefficients is the

most time-consuming operation. It requires a total of

= (n-i) x (td4 + tc) (9.38)

, where n is the dimension of matrix A, and t d4 is the delay of LUTS4

and t = D is equal to the duration of a clock cycle. The next delay

comes from the processor of Figure 9.5 and is proportional to

; t2 = t€c + td4 (9.39)

-We now take into account the delay necessary for interfacing the systems

of Figures 9.4 and 9.5. A simple analysis shows that this delay is

proportional to
* S.-.

'.-'. t3 = (n-1) x td4  (9.40)

Finally, the total delay of the array processor of Figure 9.7 is of the

order of

t = (n.2) x tc (9.41)
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From Eqs. (9.38)-(9.41), we find that the total delay of the system can

be approximated by

Ts = 2n (td4 + tC) (9.42)

To express T as a function of t we need to calculate the delay td4.
sd4

Inspection of Figure 9.2 reveals that the total delay is a function of

n. A simple analysis shows that the total delay is proportional to

td4 - (L + 3) x t (9.43)" . t4 c"

where L is an inzeger which satisfies 2L  n < 2LI'. From Eq. (9.42)

and (9.43), we find that the system delay is proportional to

T. = 2n (L + 4) tc (9.44)

i.e., the system delay is a linear function of n. Thus for our 6x6

example, the total time required to invert the first matrix is

T 72 t (9.45)"::.:. s c

Assuming a clock cycle of the order of 4 nsec, we find that Ts is of

the order of 0.4 #sec. Similarly, for a 12x12 example, T5 is of the

order of 0.9 #sec.

So far we have considered the total delay of the system, i.e., the time

to invert the first matrix. Given the pipelined process, however, the

second matrix will be inverted after a time T0 which is proportional to

o
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To = nt (9.46)

This is equal to the time required for the formation of the

matrix-matrix multiplication performed by the system of Figure 9.7. In

this case and for a 12 x 12 system, each matrix inversion takes about

48 nsec. Note that this dictates the time delay necessary for loading

consecutive matrices into the system of Figure 9.4, which is equal to

T1 = nt (9.47)

We now estimate the total number of LUTs required by the processors

of Figures 9.4-9.7. From Figure 9.4 we see that the total number of

LUTS1 (or LUTS3) needed is n, whereas the total number of LUTS2 (or

LUTS4) is n(n-1)/2. The number of LUTs in each LUTS1 (or LUTS3) is

about n. Similarly, the number of LUTs in each LUTS2 (or LUTS4) is

about 3n. Finally, we need about n(n+3)/2 adder LUTs. Thus, the total

number of LUTs in the processor of Figure 9.4 is

NI = nxn + 3n2(n-l)/2 + n(n+3)/2 = 3nn2+1)/2 (9.48)

Similarly, the total number of LUTs for the processor of Figure 9.5 is

- n3/4, and for the processor of Figure 9.7 is 2n2. Thus the total

number of LUTs required per modulo is

,... :" Nt = N1 + n3/4 + 2n2 = (7n3 + 8n2 + 8n)/4 (9.49)

Note that if or is the number of moduli used, then the total number of

LUTs needed is a Nt.r

For our 6 x 6 example and with 8-bit input accuracy, we find from

q '9 5) that V must bound 1.4 x 1013. To handle this value we use 11
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moduli: 7, 9, 11, 13, 17, 19, 23, 25, 29, 31 and 37, and in this case

the total number of LUTs becomes = 5,000. Note that these results

reflect the fact that we chose to use a high degree of parallel

processing which results in a LUT number requirement that is

proportional to n3 . This requirement can be reduced considerably if we

choose to use more of a serial-type processor; this, however, will

reduce the speed of the processor. Such issues require trade-off

analyses in order to show clearly the optimum system architecture once

the convergence time requirement is defined.

-
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10. CONCLUSIONS AND RECOM NDATIONS

In this program we have examined the possibility of using DUAC-based AO

processors for solving eigensystems in conjunction with the APAR

problem. Study of existing eigensytem solution algorithms has revealed

that many of the required logical and arithmetic operations cannot be

provided by the AO processors. An analysis of various classes of AO

processors, that are based on DMAC and its parallel extension BPAM, has

clearly shown that this type of AO system offers no advantage over

existing all-electronic systems. Therefore, we do not consider this to

be a viable approach.

.We have suggested that optical interconnections will allow electronic

digital multipliers, in square array formats, to be globally

interconnected. At high processing speeds ( 500 MHz) optical

interconnections seem to be the only choice. These, in conjunction with

global comunications, will enhance the processing speed. We have

suggested a simple but.efficient fiber-optic technique that allows for

global interconnections and we have fabricated a prototype optically

addressed digital multiplier. Much work is needed in this area. We

suggest that further analyses be carried out of an optically

interconnected square array for matrix-matrix multiplication and that a

prototype array be built and evaluated.

Residue-based LUT processing has been considered. We have proposed a

laser diode-based LUT which can be fabricated with present technology

and have fabricated and tested a modulo 7 prototype LUT. The results

suggest that when monolithic LUTs are developed, switching speeds that

exceed 1 GHz should be easily achievable. We suggest that LUT modelling

and analysis take place so that the problem of pulse reflections can be

minimized. The number of laser diodes in the fabricated LUT grows as

the square of the modulo. In order to avoid an excessive number of

.1 10-1
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laser diodes novel LUT architectures need to be developed and we

recommend that additional research be done in this area. We have shown

that B/R and R/B conversions can be efficiently implemented via the use

of LUTs. An example of LUT array processing has shown that these

conversions require about 20% of the total hardware. This suggests that

the longer the processing in the RNS the less the relative hardware

needed for conversions. For the above example we have also shown that

the total number of gates for the RNS LUT processing is about twice that

of the electronic counterpart. This suggests that comparison analyses

be done in order to identify both the competitiveness of LUT processing

as well as the applications for which RNS LUT processing is well suited.

The INS LUT processing has also been studied for use in the APAR area.

We have found that the only algorithm suited for residue LUT

implementation is a variant of the Gram-Schmidt orthogonalization

procedure. We have shown, through examples, that such an approach

yields the correct results. We recommend that this approach be further

analysed in order to determine its exact requirements and shortcomings.

Finally, we have presented the complete design of a pipelined RNS LUT

processor for the inversion of a 8x6 APAR data matrix. We have shown

that with a fully parallel implementation, the matrix inversion takes

place in N+1 cycles. Note that for such an implementation, the total
number of LUTs grows as Z 2N3 . Thus, in order to avoid an excessive

number of LUTs we recommend that a similar design be made with a more

serial nature. Such a design should clearly show the trade-offs between

processing speed and hardware complexity.

10-2
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APPENDIX A

AN ANALYSIS FOR CIRCULARLY POLARIZED SAMPLING

This appendix describes the mathematical validity of the circularly

polarized sampling by observing the sampled function in the frequency

domain.

Consider a complex function, f(t), that has a real and an imaginary part:

f(t) = fR(t) + fi(t) (A-1)

The sampling function is a series of delta functions, the phase of which is

shifted by 90 (Figure A.1) or the complex amplitude part forms a series

(1, j, -1, -j, 1, j ....). In the first sampling period, it samples the

real part of the input function; in the second sampling period, it samples

the imaginary part; in the third period, it samples the real part with

negative polarity; and in the fourth period, it samples the imaginary part

with negative polarity. This four-cycle pattern is repeated for the

remainder of the sampling operation. We call this function a Right-Hand

Circularly Polarized (RCP) sampling function, indicating the rotational

orientation of the phasor. Similarly, a Left-Hand Circularly Polarized

(LCP) sampling function is a delta function series with the quadrature

rotating in the opposite direction (1, -j, -1, j, ...) and the sampling

operation can be performed in a similar way.

Mathematically this operation can be described as follows:

Let sRCp(t) and aLCp(t) be the RCP and LCP sampling functions,

respectively, i.e.,

8 *j21r It- comb(12) (A-2)
r-. 5
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.I



Dwg. 9359A86

tt

a) Right Hand Circularly Polarized b) Left Hand Circularly Polarized
Sampling Function Sampling Function

Figure A. 1 Circularly polarized sampling function.

BLCP(t) = ej2r co A-3
2tcmb (2t (

The sampled versions of the functions f and Crctlare obtained-.- he smple verionsoff he. unctons RCP(t) ndfLCP(t) aeotfie

by evaluating the real part of the product of f(t) and the sampling

functions

f1o(t) = Re (f(t) ORC(t))

= Re fR(t) + j fi~t)]•[cos 2r + j sin 2Y comb

R(t) 2(t) -j2t 1 (2t)

2 If(t) + f (t) j comb 2t (A-4)
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fl'a(t) R1. {f(t) sLCP(t)~

1t t comb (A-5)2 ft)e"2t + f~t e 2t. !j(A5

Therefore fRC(t) = f p(t), i.e., the RCP sampled signal and the LCP

sampled signal are conjugate to each other.

The spectra of these signals can be obtained by Fourier transformation

of the expressions:

F RPW ) f= - + F comb (A-6)

7LCF(V) F + Fijv + ~-]*comb v)z' (A-7)

after dropping unnecessary coefficients (see Figure A.2). These

equations indicate that the frequency domain contains the replications

of the original spectra as in the case of ordinary sampling. The

differences are that the primary spectra are located at 1/2t* and that

the adjacent aliases are conjugate to each other. The spacing between

the alias centers is 1/t3 . Therefore, the bandwidth of the original

function B must be smaller than that of the sampling frequency, i.e.,

'J.

tB (A-8)

A-8
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In other words, the bandwidth requirement is identical to that of

conventional sampling, namely, the Nyquist criterion.

m4

Ow9. 9359A87

F(v) 0 F(v) Fs (v)

-1/2t 0 1/2 t 1/ts  2It s

Figure A.2 The spectrum for a C? sampled signal.
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